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Distance, Semimetric, Metric [DL97,LLR95]

Given a (finite) set N, a distance d : N × N → R+ satisfies
• symmetry: d(i , j) = d(j , i) for i , j ∈ N
• and d(i , i) = 0 for i ∈ N

A distance d is a semimetric if, in addition,
• the 4-inequalities hold: d(i , j) ≤ d(i , k) + d(k , j) for i , j , k ∈ N

A semimetric d is a metric on N if, in addition,
• d(i , j) = 0 ⇔ i = j

Depending on d , the pair (N, d) forms a
distance/semimetric/metric space.

Example: Given a connected graph G = (N,E ), let d(i , j) denote
the length of a shortest path between i and j , then (N, d) is a
metric space.
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Further examples:

• METn in DL97: Symmetric nonnegative matrices of order n
with diagonal 0 that satisfy all 4-inequs, describe all
semimetrics on n elements.
Given d , d ′ ∈METn and λ ≥ 0, we have λ(d + d ′) ∈METn, so
METn is a convex cone.

• CUTn in DL97: For S ⊆ N define the cut-semimetric

dS(i , j) =

{
1 for ij ∈ δ(S) := {ij : |S ∩ {i , j}| = 1},
0 otherwise,

then
∑

S⊆N λSdS with λS ≥ 0 is again a semimetric.
→ the cut cone CUTn := {

∑
S⊆N λSdS : λS ≥ 0 ∀S ⊆ N}

• For a normed space (E , ‖ · ‖), d‖·‖(x , y) = ‖x − y‖ is the
associated norm metric. In particular, we use dlp = ‖x − y‖p
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Embeddings and Distortion
Given two distance spaces (N, d), (N ′, d ′) a mapping φ : N → N ′

is called a Lipschitz embedding of (N, d) into (N ′, d ′) with
distortion c ≥ 1 if

1

c
d(i , j) ≤ d ′(i , j) ≤ d(i , j) holds ∀i , j ∈ N.

An embedding with distortion c = 1 is an isometric embedding.

A distance space is lp embeddable if there is an isometric
embedding into (Rm, dlp ) for some m ≥ 1.

[Bourgain1985]: Any n-point metric space (N, d) can be embedded
in O(log n)-dimensional Euclidean space with distortion O(log n).

• d-cube: n = 2d vertices,
distortion

√
d ∈ O(log n) for l2.

(reg. expanders yield Ω(log n) examples [LLR1995])

[JohnsonLindenstrauss1984]: Any n points in an Euclidean space
can be mapped to Rt with t = O( log n

ε2 ) and distortion ≤ 1 + ε.
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Example: Isometric l∞ embedding

d is a semimetric on N = {1, . . . , n} ⇔ (N, d) is l∞ embeddable
[⇔ d ∈METn]

Proof:
“⇐”: stemming from a norm, d satisfies all 4-ineqs.

“⇒”: setting vi = (d(1, i), . . . , d(n − 1, i)) ∈ Rn−1 for i ∈ N
defines an isometry:

‖vi−vj‖∞ = max{|d(k, i)− d(k , j)|︸ ︷︷ ︸
4-ineq ≤d(i ,j)

: k ∈ {1, . . . , n−1}} k∈{i ,j}
= d(i , j)
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Example: l1 Embeddability and the Cut Cone
A cut semimetric dS , S ⊆ N is l1 embeddable:
φ(i) = 1 for i ∈ S , φ(i) = 0 for i ∈ N \ S .

N = {1, . . . , n}, d ∈CUTn ⇔ (N, d) is l1 embeddable

Proof “⇒”:
Given d =

∑m
k=1 λkdSk

with λk ≥ 0, define n vectors v i ∈ Rm, i ∈ N,

v i
k =

{
λk i ∈ Sk

0 i ∈ N \ Sk
⇒ ‖v i−v j‖1 =

∑
k:|{i ,j}∩Sk |=1

λk = d(i , j)

“⇐”: Given v i ∈ Rm, i ∈ N, d(i , j) := ‖v i − v j‖1, is d ∈CUTn?

→ Find a representation
∑
λkdSk for each coordinate |v i

h − v j
h|.

W.l.o.g., m = 1, d(i , j) = |v i − v j | for v i ∈ R and v1 ≤ · · · ≤ vn.

Then for Sk = {1, . . . , k}, d =
∑

1≤k≤n−1(vk+1 − vk)dSk
∈CUTn

Checking l1 embeddability is NP-complete!
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Minimum Distortion Euclidean Embeddings [LLR1995]
Semidefinite programming allows to find a minimum distortion
Euclidean embedding in Rn:

• An Euclidean embedding ρ : N → Rd of (N, d) has distortion c if

1

c
d(i , j) ≤ ‖ρ(i)− ρ(j)‖2 ≤ d(i , j) ∀i , j ∈ N

• Put vi = ρ(i), V = [v1, . . . , vn] and consider the

Gram matrix X = V TV � 0 (xij = vT
i vj) Eij =

[
1 −1
−1 1

]
i
j

Note: ‖vi‖2 = xii and ‖vi − vj‖2 = xii − 2xij + xjj = 〈Eij ,X 〉
Find an embedding of minimal distortion by solving

max t
s.t. t · d(i , j)2 ≤ 〈Eij ,X 〉 ≤ d(i , j)2 ∀i , j ∈ N, i 6= j

X � 0

Use [JL84] → embedding in RO(log n) with distortion O(Dopt)
• [Vallentin2007] optimal distortion embeddings for classes of

distance regular graphs (Hamming/Johnson Graphs/. . . )
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Find an embedding of minimal distortion by solving

max t
s.t. t · d(i , j)2 ≤ 〈Eij ,X 〉 ≤ d(i , j)2 ∀i , j ∈ N, i 6= j

X � 0

Use [JL84] → embedding in RO(log n) with distortion O(Dopt)
• [Vallentin2007] optimal distortion embeddings for classes of

distance regular graphs (Hamming/Johnson Graphs/. . . )
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Sensor Network Localization
Euclidean Distance Matrix Completion

• Given a graph G = (N,E ), a few node positions vi ∈ Rd , i ∈ N ′ ⊂ N

and (approximate) edge lengths,

is there a distance preserving embedding of all nodes in Rd?

• various relaxation variants exist [SoYe2004,DKQW2006], e.g.,

min
1

2

∑
ij∈E

(
〈Eij ,X 〉 − d(i , j)2

)2
s.t. xij = vT

i vj ∀1 ≤ i ≤ j ≤ k
X � 0

• almost identical to the Euclidean Distance Matrix Completion Problem
[DingKrislockQianWolkowicz2006]

• Questions of uniqueness lead to rigidity/tensegrity theory. [SoYe2005]
• main difficulty: Rd ⇔ rank(X ∗) ≤ d (nonconvex!)

→ general interest in “existence of low rank optimal solutions”
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Graph Realizations [BelkConnelly07]

• A graph G = (N,E ) with given distances dij , ij ∈ E is realizable in Rd

if there exist v1, . . . , vn ∈ Rd with ‖vi − vj‖ = dij ∀ij ∈ E

• A graph G = (N,E ) is d-realizable, if any realization in RN

is also realizable in Rd .

• Excluded minor characterizations of d-realizability [BelkConnelly07]

(sequ. of deletions of edges or isolated vertices or contractions of edges)

◦ 1-realizable: no K3 minor (forests)

◦ 2-realizable: no K4 minor (series parallel)

◦ 3-realizable: no K5 and K2,2,2 minor

• [SoYe06] give a polynomial algorithm for constructing
an (approx.) realization for 3-realizable graphs
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Tensegrities [Connelly1998]
• A tensegrity consists of bars, cables, and struts that link vertices that

are pinned or not pinned → graph with edges of fixed/max/min length

• Prestress stability: for potential functions fij for ij ∈ E find a local min

min
∑
ij∈E

fij(‖vi − vj‖2) s.t. ‖vi − vj‖2 =/≤/≥ . . .

A non-deg. local min, unique up to rigid congruences, is prestress stable.

• Tensions wij ∈ R/R+/R− for ij ∈ E define a (proper) equilibrium stress
for an embedding vi ∈ Rd if for each i∑

j :ij∈E wij(vi − vj) = 0

→ stress matrix Ω, Ωij = −wij for ij ∈ E , Ωii =
∑

ij∈E wij and = 0 otherwise.

• The tensegrity is super stable if wij > 0 (< 0) for all cables (struts),

Ω � 0 has max. rank n−d−1 and there are no (infinitesimal) affine flexes
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Maximum Variance Unfolding [WeinbergerSaul2004]
• visualization-technique for graphs G = (N,E ) in data mining
• Spread out a graph as much as possible, edges = cables of length 1

max
∑

1≤i<j≤n ‖vi − vj‖2
s.t. ‖vi − vj‖2 ≤ 1 ij ∈ E

vi ∈ Rn

• Can be shown to be equivalent to [SBXD04]

max
∑

1≤i≤n ‖vi‖2
s.t.

∑
vi = 0

‖vi − vj‖2 ≤ 1 ij ∈ E
vi ∈ Rn

→ “rotate” the graph around its barycenter [GHW05]
• Also equivalent to redistributing edge weights so as to [GHW05]

max
w

λ2(Lw (G ))

maximize the second smallest eigenvalue of the Laplace matrix of G
• Corresponds to finding a fastest mixing (symmetric) Markov chain on G

[SBXD04]
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Laplace matrix of a graph
• simple undirected Graph G = (N,E ), E ⊆ {ij : i , j ∈ N, i 6= j}
• Laplacian L(G ) = Diag(A1)− A, A . . . adjacency matrix, 1 = [1, 1, . . . , 1]T

3 4

2

1

L =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1

0 0 −1 1



May be viewed as a discrete version of the Laplace operator ∆u = uxx +uyy :

−1

4

−1

−1

−1

For the wave equation ∆u = utt solve ∆u + λu = 0 ↔
uxx(x , y) ≈ u(x−h,y)−2u(x,y)+u(x+h,y)

h2 ,

uyy (x , y) ≈ u(x,y−h)−2u(x,y)+u(x,y+h)
h2

4u(x,y)−u(x−h,y)−u(x+h,y)−u(x,y−h)−u(x,y+h) ≈ h2λu(x,y)

• weighted Laplacian for w ≥ 0: Lw (G ) =
∑
ij∈E

wijEij Eij =

[
1 −1
−1 1

]
i
j

• Properties: Lw � 0 (sym., pos. semidef.), λ1(Lw ) = 0 with EV 1.
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Nodal Domains

In the wave equation of a string or drum, eigenfunctions represent modes
of vibration.

For each eigenfunction, the zeros represent nodes/nodal lines, along
which the string/drum does not move. The moving regions in between
are the nodal domains, all points in a nodal domain have the same sign.

For an eigenvector v of Lw (G ) of a connected graph G = (N,E ) there are
• strong nodal domains: each connected component of the subgraph

induced by all i ∈ N with vi > 0 (and likewise by vi < 0)
• weak nodal domains: each connected component of the subgraph

induced by all i ∈ N with vi ≥ 0 (and likewise by vi ≤ 0)

For the depicted values of the eigenvector
there are 4 strong nodal domains
and 2 weak nodal domains.
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Nodal Domains of Generalized Laplacians [BLS2000]

A symmetric matrix M is called a generalized Laplacian or discrete
Schrödinger operator of a graph G = (N,E ), if

Mij is

 < 0 for ij ∈ E ,
= 0 for ij /∈ E , i 6= j ,
∈ R for i = j .

Theorem. Let M be a generalized Laplacian of a connected graph and
let λk be an eigenvalue of M of multiplicity r , i. e.,
λ1 ≤ · · · ≤ λk−1 < λk = · · · = λk+r−1 < λk+r ≤ . . .
Any eigenvector to λk induces at most k weak nodal domains and at
most k + r − 1 strong nodal domains.

Fiedler1974 proved that for any eigenvector v of λ2(G ) and α ≤ 0, the
node set Nα := {i ∈ N : vi ≥ α} induces a connected subgraph. He
showed tight relations between λ2(G ) and the connectivity of the graph.
→ Fiedler-vector in spectral graph partitioning heuristics.
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Rough sketch for strong nodal domains: idea goes back to Courant.

Let vk to λk induce strong domains D1,. . . ,Dm.

Define m new vectors g j via g j
i :=

{
vk
i for i ∈ Dj ,

0 otherwise,
j = 1, . . . ,m.

They are linearly independent, because their support is distinct.

Let w1, . . . ,wm−1 be eigenvectors to λ1, . . . , λm−1, span dim. m − 1
⇒ ∃αj ∈ R so that g =

∑m
j=1 αjg

j 6= 0 and gTwh = 0, h = 1, . . . ,m− 1.

w.l.o.g., ‖g‖ = 1 ⇒ gTMg ≥ λm (orthog. to the first m − 1 wh)

Exploit g = a ◦ v with ai =

{
αj if i ∈ Dj ,
0 otherwise,

in order to show gTMg ≤ λk

(e.g., for ij ∈ E with vivj > 0⇒ αi − αj = 0).

Now λm ≤ gTMg ≤ λk < λk+r implies m < k + r .
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The Colin de Verdière Graph Parameter µ(G )
[CdV199*,vdHLS1999]

Given a graph G = (N,E ) the parameter µ(G ) is the largest corank of
any matrix M satisfying
(M1) M is a generalized Laplacian
(M2) M has exactly one negative eigenvalue
(M3) 6 ∃X ∈ Sn \ {0} with MX = 0 ∧ Xij = 0 for {i = j , ij ∈ E}

(M3) is an important technical condition, that insures that the space of
constant rank matrices intersects the space of (M1) matrices
transversally (the strong Arnold property).
[vdHLS] give an interpretation as the nonexistence of an equilibrium
stress for a derived Gram embedding of the complement graph.

µ(G ) is bounded above by the tree width +1 and it is minor monotone!
• µ(G ) ≤ 1 ⇔ G is a disjoint union of paths
• µ(G ) ≤ 2 ⇔ G is outerplanar
• µ(G ) ≤ 3 ⇔ G is planar
• µ(G ) ≤ 4 ⇔ G is linklessly embeddable
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SDP Rank Reduction [SoYeZhang2006]
• Given distance constraints 〈Eij ,X 〉 = dij ,

how much do we have to violate them to find low-rank solutions?

Theorem. Given A1, . . . ,Am ∈ Sn
+, b1, . . . , bm ∈ R+, suppose there is an

X � 0 with
〈Ai ,X 〉 = bi , i = 1, . . . ,m.

For r = min{
√

2m, n} and any d ≥ 1 there is an X0 � 0, rank(X0) ≤ d
so that

β(m, n, d) · bi ≤ 〈Ai ,X0〉 ≤ α(m, n, d) · bi i = 1, . . . ,m

with α(m, n, d) =

{
1 + 12 ln(4mr)

d for 1 ≤ d ≤ 12 ln(4mr)

1 +
√

12 ln(4mr)
d for d > 12 ln(4mr)

and β(m, n, d) =


1

(2m)2/de
for 1 ≤ d ≤ 4 ln(2m)

max

{
1

(2m)2/de
, 1−

√
4 ln(2m)

d

}
for d > 4 ln(2m).

• [Barvinok2002]: (1− ε)bi ≤ 〈Ai ,X0〉 ≤ (1 + ε)bi for d = 8ε−2 ln(4m)

• includes [JohnsonLindenstrauss1984]
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Finding Low-Rank Solutions by Norm Minimization
[RechtFazelParrilo2007]

• rank version of sparsest vector/compressed sensing is

min rank(Y ) s.t. AY = b, Y ∈ Rm×n

• e.g. for finding low-rank Euclidean distance matrices, solve

min rank(X ) s.t. 〈Eij ,X 〉 = d2
ij (ij ∈ E ), X � 0

How to represent X � 0?

rank
(

Y =

[
Id V
V T X

])
= d ⇔ X = V TV � 0

⇒ EDM-Completion in Rd may be cast as the problem

min rank(Y ) s.t. AY = b
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Nuclear Norm Minimization [RechtFazelParrilo2007]
• Solve relaxation of min rank(Y ) s.t. AY = b, Y ∈ Rm×n

• Idea: Minimize the sum of singular values
∑
σi (Y ) [like l1 norm]

min
1

2
〈I ,W 〉 s.t. W =

[
W1 Y
Y T W2

]
� 0, AY = b

because for Y = UΣV T

⇔ [UT V T ] W

[
U
V

]
� 0 ⇔

[
UTW1U Σ

Σ V TW2V

]
� 0

⇒ diagonal matrices and for each i

[
αi σi

σi βi

]
� 0 ⇒ αiβi ≥ σ2

i

The minimizing choice for αi + βi is αi = βi = σi .

Theorem. Suppose AY0 = b, rank(Y0) = r and δ5r <
1
10 . Then Y∗ = Y0.

• rank r-restricted isometry constant: smallest δr (A) with

(1− δr (A))‖Y ‖F ≤ ‖A(Y )‖ ≤ (1 + δr (A))‖Y ‖F ∀Y : rank(Y ) = r

• They also show that this holds for a certain random family of matrices.
• SDPLR by [BurerMonteiro2003/5]
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