Graph Realizations Corresponding to Optimized Extremal Eigenvalues of the Laplacian

Christoph Helmberg

joint work with Frank Göring Susanna Reiß (Dienelt) Markus Wappler

TU Chemnitz

- Introduction: Laplacian and Algebraic Connectivity
- Eigenvalue Optimization and Embedding Problems
- Separators and Optimal Embeddings
- Tree-Width Bound on Minimal Dimensions
- Sharpness of the Bounds
- Rotational Dimension of a Graph

- simple undirected Graph G = (N, E), $N = \{1, \dots, n\}$, $E \subseteq \{ij : i, j \in N, i \neq j\}$
- Laplacian L(G) = Diag(Ae) A $A \dots \text{adjacency matrix}, e = [1, 1, \dots, 1]^T$

$$\begin{array}{c} 1 \\ 0 \\ 2 \\ \end{array} \\ 2 \\ \end{array} \\ \begin{array}{c} 0 \\ 3 \\ 2 \\ \end{array} \\ \begin{array}{c} 0 \\ 4 \\ \end{array} \\ \begin{array}{c} 2 \\ -1 \\ -1 \\ -1 \\ -1 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ -1 \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ -1 \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ -1 \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ 1 \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ -1 \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ 1 \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$$
 \\ \end{array}

- simple undirected Graph G = (N, E), $N = \{1, \dots, n\}$, $E \subseteq \{ij : i, j \in N, i \neq j\}$
- Laplacian L(G) = Diag(Ae) A $A \dots \text{adjacency matrix}, e = [1, 1, \dots, 1]^T$

$$\begin{array}{c} 1 \\ 0 \\ 2 \\ 2 \\ \end{array} \begin{array}{c} 0 \\ 3 \\ 2 \\ \end{array} \begin{array}{c} 0 \\ 4 \\ 2 \\ \end{array} \begin{array}{c} 2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ -1 \\ -1 \\ 1 \\ \end{array} \begin{array}{c} 0 \\ -1 \\ -1 \\ 1 \\ \end{array} \begin{array}{c} 0 \\ -1 \\ -1 \\ 1 \\ \end{array} \begin{array}{c} 0 \\ -1 \\ -1 \\ 1 \\ \end{array} \right]$$

• weighted Laplacian for $w \ge 0$: $L_w(G) = \sum_{ij \in E} w_{ij} E_{ij}$ $E_{ij} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}$

- simple undirected Graph G = (N, E), $N = \{1, \dots, n\}$, $E \subseteq \{ij : i, j \in N, i \neq j\}$
- Laplacian L(G) = Diag(Ae) A $A \dots \text{adjacency matrix}, e = [1, 1, \dots, 1]^T$

- weighted Laplacian for $w \ge 0$: $L_w(G) = \sum_{ij \in E} w_{ij} E_{ij}$ $E_{ij} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix}$
- Properties: $L_w \succeq 0$ (sym., pos. semidef.), $\lambda_1(L_w) = 0$ with EV e.

- simple undirected Graph G = (N, E), $N = \{1, \ldots, n\}$, $E \subseteq \{ij : i, j \in N, i \neq j\}$
- Laplacian L(G) = Diag(Ae) A $A \dots \text{adjacency matrix}, e = [1, 1, \dots, 1]^T$

- weighted Laplacian for $w \ge 0$: $L_w(G) = \sum_{ij \in E} w_{ij} E_{ij}$ $E_{ij} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} i \\ j \end{pmatrix}$
- Properties: $L_w \succeq 0$ (sym., pos. semidef.), $\lambda_1(L_w) = 0$ with EV e.
- [Fiedler 1973, 1989, 1993] $\lambda_2(L(G)) > 0$ iff G is connected proved close ties to edge and node connectivity, "algebraic connectivity"
- EV to $\lambda_2(L)$ used in many partitioning heuristics, "Fiedler vector"
- Laplacian Spectrum in Graph Theory, see e.g. [Mohar 1991, 2004]

Central Question:

What connections exist between eigenvectors of extremal eigenvalues and structural properties of the graph?

Central Question:

What connections exist between eigenvectors of extremal eigenvalues and structural properties of the graph?

Idea: redistribute the weight on the edges of the graph, then hopefully characteristic properties will become more apparent.

Central Question:

What connections exist between eigenvectors of extremal eigenvalues and structural properties of the graph?

Idea: redistribute the weight on the edges of the graph, then hopefully characteristic properties will become more apparent.

[Fiedler 1989] did this for λ_2

$$\max_{w \in \mathcal{W}} \lambda_2(L_w) \qquad \qquad \mathcal{W} = \{ w \in \mathbb{R}^E_+ : \sum_{ij \in E} w_{ij} = w^T e \leq 1 \}$$

→ Absolute Algebraic Connectivity

[Fiedler 1990] exhibits formula for optimal weights in trees.

$\max_{w\in\mathcal{W}}\lambda_2(L_w)$	$\min_{w \in \mathcal{W}} \lambda_{max}(L_w)$

$\max_{w\in\mathcal{W}}\lambda_2(L_w)$	$\min_{w \in \mathcal{W}} \lambda_{max}(L_w)$
as S	DP:
max λ	min λ
s.t. $\sum_{T} ij \in E} w_{ij} E_{ij} + \mu ee^T \succeq \lambda I$	s.t. $\sum_{T_{ij\in E}} w_{ij} E_{ij} \preceq \lambda I$
$e^{-}w = 1, w \ge 0$	$e^{\bot}w \equiv 1, w \geq 0$

$\max_{w\in\mathcal{W}}\lambda_2(L_w)$	$\min_{w \in \mathcal{W}} \lambda_{max}(L_w)$	
as SDP:		
$\begin{array}{ll} \max & \lambda \\ \text{s.t.} & \sum_{ij \in E} w_{ij} E_{ij} + \mu e e^T \succeq \lambda I \\ & e^T w = 1, w \geq 0 \end{array}$	$egin{array}{lll} { m min} & \lambda \ { m s.t.} & \sum_{ij\in E} w_{ij}E_{ij} \preceq \lambda I \ e^Tw = { m 1}, w \geq 0 \end{array}$	
divide by $\lambda_{opt} > 0$		
$\begin{array}{ll} \min & e^T w \\ \text{s.t.} & \sum_{ij \in E} w_{ij} E_{ij} + \mu e e^T \succeq I \\ & w \geq 0 \end{array}$	$egin{array}{ll} \max & e^Tw \ { extsf{s.t.}} & \sum_{ij\in E} w_{ij}E_{ij} \preceq I \ & w \geq 0 \end{array}$	

$\max_{w\in\mathcal{W}}\lambda_2(L_w)$	$\min_{w \in \mathcal{W}} \lambda_{max}(L_w)$	
as S	DP:	
$\begin{array}{ll} \max & \lambda \\ \text{s.t.} & \sum_{ij \in E} w_{ij} E_{ij} + \mu e e^T \succeq \lambda I \\ & e^T w = 1, w \geq 0 \end{array}$	$egin{array}{lll} \min & \lambda \ { m s.t.} & \sum_{ij\in E} w_{ij}E_{ij} \preceq \lambda I \ e^Tw = { m 1}, w \geq 0 \end{array}$	
divide by $\lambda_{opt} > 0$		
$\begin{array}{ll} \min & e^T w \\ \text{s.t.} & \sum_{ij \in E} w_{ij} E_{ij} + \mu e e^T \succeq I \\ & w \ge 0 \end{array}$	$egin{array}{lll} \max & e^Tw \ ext{s.t.} & \sum_{ij\in E} w_{ij}E_{ij} \preceq I \ & w \geq 0 \end{array}$	
dualize		
$\begin{array}{ll} \max & \langle I, X \rangle \\ \text{s.t.} & \langle E_{ij}, X \rangle \leq 1, ij \in E \\ & \langle ee^T, X \rangle = 0 \\ & X \succeq 0 \end{array}$	$egin{array}{ll} { m min} & \langle I,X angle \ { m s.t.} & \langle E_{ij},X angle \geq { m 1}, & ij\in E \ & X\succeq { m 0} \end{array}$	

$\max_{w\in\mathcal{W}}\lambda_2(L_w)$	$\min_{w \in \mathcal{W}} \lambda_{max}(L_w)$	
as S	DP:	
$\begin{array}{ll} \max & \lambda \\ \text{s.t.} & \sum_{ij \in E} w_{ij} E_{ij} + \mu e e^T \succeq \lambda I \\ & e^T w = 1, w \geq 0 \end{array}$	$\begin{array}{ll} \min & \lambda \\ \text{s.t.} & \sum_{ij \in E} w_{ij} E_{ij} \preceq \lambda I \\ & e^T w = 1, w \geq 0 \end{array}$	
divide by	$\lambda_{opt} > 0$	
$\begin{array}{ll} \min & e^T w \\ \text{s.t.} & \sum_{ij \in E} w_{ij} E_{ij} + \mu e e^T \succeq I \\ & w \ge 0 \end{array}$	$\begin{array}{ll} \max & e^T w \\ \text{s.t.} & \sum_{ij \in E} w_{ij} E_{ij} \preceq I \\ & w \geq 0 \end{array}$	
dualize		
$\begin{array}{ll} \max & \langle I, X \rangle \\ \text{s.t.} & \langle E_{ij}, X \rangle \leq 1, ij \in E \\ & \langle ee^T, X \rangle = 0 \\ & X \succeq 0 \end{array}$	$egin{array}{ll} { m min} & \langle I,X angle \ { m s.t.} & \langle E_{ij},X angle \geq { m 1}, & ij\in E \ & X\succeq { m 0} \end{array}$	
embedding: set $X = V^T V$ with $V = [v_1, \ldots, v_n]$		
max $\sum_{\substack{i \in \mathbb{R}^n}} \frac{\ v_i\ ^2}{\ v_i - v_j\ ^2} \le 1, ij \in E$ $\sum_{\substack{i \in \mathbb{R}^n}} \frac{\ v_i - v_j\ ^2}{\ v_i - v_j\ ^2} \le 1, ij \in E$	$\begin{array}{ll} \min & \sum \ v_i\ ^2\\ \text{s.t.} & \ v_i - v_j\ ^2 \geq 1, ij \in E\\ & v_i \in \mathbb{R}^n \end{array}$	
	$(\sum v_i = 0$ holds, as well)	

The embedding problem

$\max_{w\in\mathcal{W}}\lambda_2(L_w)$	$\min_{w \in \mathcal{W}} \lambda_{max}(L_w)$
$\begin{array}{ll} \max & \sum \ v_i\ ^2\\ \text{s.t.} & \ v_i - v_j\ ^2 \leq 1, ij \in E\\ & \sum v_i = 0\\ & v_i \in \mathbb{R}^n \end{array}$	$\begin{array}{c c} \min & \sum \ v_i\ ^2\\ \text{s.t.} & \ v_i - v_j\ ^2 \ge 1, ij \in E\\ & (\sum v_i = 0)\\ & v_i \in \mathbb{R}^n \end{array}$

- λ_2 : nodes are pulled outwards and edges are cables of length 1 λ_{\max} : nodes are pressed inwards and edges are struts of length 1 w_{ij} is the force acting on the cable/strut $ij \in E$
- For any $u \in \mathbb{R}^n$ the projection $V^T u$ yields an eigenvector to λ_{opt} . (by complementarity)

The embedding problem

$\max_{w\in\mathcal{W}}\lambda_2(L_w)$	$\min_{w\in\mathcal{W}}\lambda_{max}(L_w)$
$\begin{array}{ll} \max & \sum \ v_i\ ^2\\ \text{s.t.} & \ v_i - v_j\ ^2 \leq 1, ij \in E\\ & \sum v_i = 0\\ & v_i \in \mathbb{R}^n \end{array}$	$\begin{array}{ll} \min & \sum \ v_i\ ^2\\ \text{s.t.} & \ v_i - v_j\ ^2 \ge 1, ij \in E\\ & (\sum v_i = 0)\\ & v_i \in \mathbb{R}^n \end{array}$

- λ_2 : nodes are pulled outwards and edges are cables of length 1 λ_{\max} : nodes are pressed inwards and edges are struts of length 1 w_{ij} is the force acting on the cable/strut $ij \in E$
- For any $u \in \mathbb{R}^n$ the projection $V^T u$ yields an eigenvector to λ_{opt} . (by complementarity)
- Replace the origin by the barycenter $\bar{v} = \frac{1}{n} \sum v_i$

$$\begin{array}{ll} \max & \sum \|v_i - \bar{v}\|^2 \\ \text{s.t.} & \|v_i - v_j\|^2 \le 1, \quad ij \in E \\ & \sum (v_i - \bar{v}) = 0 \\ & v_i \in \mathbb{R}^n \end{array} \end{array} \qquad \begin{array}{ll} \min & \sum \|v_i - \bar{v}\|^2 \\ \text{s.t.} & \|v_i - v_j\|^2 \ge 1, \quad ij \in E \\ & \sum (v_i - \bar{v}) = 0 \\ & v_i \in \mathbb{R}^n \end{array}$$

then $\sum \|v_i - \overline{v}\|^2 = \frac{1}{n} \sum_{i,j} \|v_i - v_j\|^2$ is the variance.

Equivalent/Related Problems

- λ_2 : Fastest Mixing Markov Processes [SunBovdXiaoDiaconis2006] λ_2 is the rate of convergence to the stationary distribution also give an interpretation as maximizing conductance
- Maximum Variance Unfolding (visualization in data mining)

[WeinbergerSaul2004]

- Tensegrity Theory [Connelly1999] the variance corresponds to the potential and L_w to the stress matrix
- Graph Realizations [BelkConnelly2007]
- low dimensional embeddings [LinialLondonRabinovich1995]
- Expanders
- Colin de Verdière and related graph parameters

- [HooryLinialWigderson2006]
 - [CdV98,vdHolst03]

Connections to the (node-)separator structure

For a connected graph G = (N, E) the removal of a *(node-)separator* $S \subset N$ disconnects the graph into at least two connected components.

Connections to the (node-)separator structure

For a connected graph G = (N, E) the removal of a *(node-)separator* $S \subset N$ disconnects the graph into at least two connected components.

Tree-Width

Given G = (N, E), let $T = (\mathcal{N}, \mathcal{E})$ be a tree with $\mathcal{N} \subseteq 2^N$ and $\mathcal{E} \subseteq \binom{\mathcal{N}}{2}$ so that (i) $N = \bigcup_{U \in \mathcal{N}} U$.

(ii) For every $e \in E$ there is a $U \in \mathcal{N}$ with $e \subseteq U$.

(iii) If $U_1, U_2, U_3 \in \mathcal{N}$ with U_2 on the T-path from U_1 to U_3 , then $U_1 \cap U_3 \subseteq U_2$. Then T is called a *tree-decomposition* of G.

The width of T is the number $\max\{|U| - 1 : U \in \mathcal{N}\}$.

The tree-width tw(G) is the least width of any tree-decomposition of G.

Connections to the (node-)separator structure

For a connected graph G = (N, E) the removal of a *(node-)separator* $S \subset N$ disconnects the graph into at least two connected components.

Tree-Width

Given G = (N, E), let $T = (\mathcal{N}, \mathcal{E})$ be a tree with $\mathcal{N} \subseteq 2^N$ and $\mathcal{E} \subseteq \binom{\mathcal{N}}{2}$ so that (i) $N = \bigcup_{U \in \mathcal{N}} U$.

(ii) For every $e \in E$ there is a $U \in \mathcal{N}$ with $e \subseteq U$.

(iii) If $U_1, U_2, U_3 \in \mathcal{N}$ with U_2 on the T-path from U_1 to U_3 , then $U_1 \cap U_3 \subseteq U_2$. Then T is called a *tree-decomposition* of G.

The width of T is the number $\max\{|U| - 1 : U \in \mathcal{N}\}$.

The tree-width tw(G) is the least width of any tree-decomposition of G.

Any $U \in \mathcal{N}$ and any $U \cap U'$ with $\{U, U'\} \in \mathcal{E}$ is a separator of G.

Main Result 1: Separators and Optimality of Embeddings

Given optimal $v_i \in \mathbb{R}^n$, $i \in N$, of a connected graph G = (N, E) and a separator $S \subset N$ separating G into node sets C_1 , C_2 so that no edges run between C_1 and C_2 , let $S = \{v_i : i \in S\}$.

$\lambda_2(L_w)$	$\lambda_{\sf max}(L_w)$
Separator-Shadow Th. For at least one $j \in \{1, 2\}$ $[v_i, 0] \cap \operatorname{conv} S \neq \emptyset \forall i \in C_j$	
geometric proof idea: C_1 h h 0° -h C_2 $b^Tx = \beta$ $h^Tx = 0$	

Sketch of Proof: by contradiction

Assume the Theorem does not hold, then w.l.o.g. there are points v_1, v_2 with $1 \in C_1$, $2 \in C_2$ and $[0, v_1] \cap S = [0, v_2] \cap S = \emptyset$.

Verify: epsilon movement improves solution \Rightarrow contradiction to optimality \Box

Main Result 1: Separators and Optimality of Embeddings

Given optimal $v_i \in \mathbb{R}^n$, $i \in N$, of a connected graph G = (N, E) and a separator $S \subset N$ separating G into node sets C_1 , C_2 so that no edges run between C_1 and C_2 , let $S = \{v_i : i \in S\}$.

$\lambda_2(L_w)$	$\lambda_{\sf max}(L_w)$
Separator-Shadow Th. For at least one $j \in \{1, 2\}$ $[v_i, 0] \cap \operatorname{conv} S \neq \emptyset \forall i \in C_j$	Separator's Sunny Side Th. Let $\bar{v}_j = \frac{1}{ C_j } \sum_{i \in C_j} v_j$, $j \in \{1, 2\}$, be the barycenter of C_j , then $\bar{v}_j \in \operatorname{aff}(\mathcal{S}) - \operatorname{cone}(\mathcal{S})$ for $j \in \{1, 2\}$
geometric proof idea: C_1 h 0° -h C_2 $b^T x = \beta$ $h^T x = 0$	

Main Result 1: Separators and Optimality of Embeddings

Given optimal $v_i \in \mathbb{R}^n$, $i \in N$, of a connected graph G = (N, E) and a separator $S \subset N$ separating G into node sets C_1 , C_2 so that no edges run between C_1 and C_2 , let $S = \{v_i : i \in S\}$.

$\lambda_2(L_w)$	$\lambda_{\sf max}(L_w)$
Separator-Shadow Th. For at least one $j \in \{1, 2\}$ $[v_i, 0] \cap \operatorname{conv} S \neq \emptyset \forall i \in C_j$	Separator's Sunny Side Th. Let $\bar{v}_j = \frac{1}{ C_j } \sum_{i \in C_j} v_j$, $j \in \{1, 2\}$, be the barycenter of C_j , then $\bar{v}_j \in aff(S) - cone(S)$ for $j \in \{1, 2\}$
geometric proof idea: C_1 h h 0° -h C_2 $b^Tx = \beta$ $h^Tx = 0$	geometric proof idea: aff(S) C_1 $\overline{v_1}$ $\overline{v_2}$ $\overline{v_2}$ C_2

$\lambda_2(L_w)$	$\lambda_{\sf max}(L_w)$
Tree-Width Bound There exists an optimal embedding of dimension at most tw(G) + 1	
needs separator shadow + involved result for separators with $0 \in \operatorname{conv} S$	
algorithmic proof idea: given a tree decomposition, start at a 0-node, try to flatten all adjacent nodes or move on to the next 0-node	
$\begin{array}{c}1\\2\\2\\\\\\\\4\\\\\\\\4\\\\\\\\4\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$	2 3 35 6 69 2 3 35 7 78 45

Theorem [Separators Containing the Origin]

Let $v_i \in \mathbb{R}^n$ for $i \in N$ be an optimal solution of (EMB) for a connected graph G = (N, E) and let $S \subset N$ with $0 \in S = \operatorname{conv}\{v_s : s \in S\}$ be a separator in G inducing a partition (S, C_1, \ldots, C_m) of N so that no node in C_j is adjacent to a node in C_h for $j \neq h$, $j, h \in M = \{1, \ldots, m\}$. Set $\mathcal{L} = \operatorname{span} S$ and, for $j \in M$, $\delta_j = \sum_{i \in C_j} ||p_{\mathcal{L}^\perp}(v_i)||$.

- (i) If $\delta_{\hat{j}} > \sum_{j \in M \setminus \{\hat{j}\}} \delta_j$ for one $\hat{j} \in M$ then there exist $h \in \mathcal{L}^{\perp}$ and an optimal embedding $v'_i \in \mathbb{R}^n$ of (EMB) with $v'_i = v_i$ for $i \in S$, $v'_i \in \mathcal{L} + \text{span} \{h, v_i : i \in C_{\hat{j}}\}$ for $i \in C_{\hat{j}}$ and $v'_i \in \mathcal{L} + \{\delta \sum_{i \in C_{\hat{j}}} v'_i : \delta \ge 0\}$ for $i \in \bigcup_{j \in M \setminus \{\hat{j}\}} C_j$. If, in addition, there exists $\bar{b} \in \text{span} \{v_i : i \in C_{\hat{j}}\}$, $\|\bar{b}\| = 1$ so that $\langle \bar{b}, v_i \rangle \ge 0$ for all $i \in C_{\hat{j}}$, then such an embedding exists with h = 0.
- (ii) If $\delta_{\hat{j}} \leq \sum_{j \in M \setminus \{\hat{j}\}} \delta_j$ for all $\hat{j} \in M$ then there exist vectors $d_1, d_2, d_3 \in \mathcal{L}^{\perp}$, $\|d_1\| = \|d_2\| = \|d_3\| = 1$ with dim span $\{d_1, d_2, d_3\} \leq 2$, $b_j \in \{d_1, d_2, d_3\}$, $j \in M$, and an optimal embedding $v'_i \in \mathbb{R}^n$, $i \in N$, of (EMB) with $v'_i = v_i$ for $i \in S$ so that for each $j \in M$ we have $v'_i \in \mathcal{L} + \{\delta b_j : \delta \geq 0\}$ for all $i \in C_j$. One may assume $b_j = d_1$ for at most one $j \in M$.
- (iii) If, in case (ii), the index $\hat{j} \in M$ is the only $j \in M$ satisfying $b_j = d_1$ and at most |S| 1 nodes of S are adjacent to nodes in $C_{\hat{j}}$, then there is an optimal embedding of dimension at most |S|.

$\lambda_2(L_w)$	$\lambda_{\sf max}(L_w)$
Tree-Width Bound There exists an optimal embedding of dimension at most tw(G) + 1	
needs separator shadow + involved result for separators with $0 \in \operatorname{conv} S$	
algorithmic proof idea: given a tree decomposition, start at a 0-node, try to flatten all adjacent nodes or move on to the next 0-node	
$\begin{array}{c}1\\2\\2\\\\\\\\4\\\\\\\\4\\\\\\\\4\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$	2 3 35 6 69 2 3 35 7 78 45

$\lambda_2(L_w)$	$\lambda_{\sf max}(L_w)$
Tree-Width Bound	Tree-Width Bound
There exists an optimal embedding of dimension at most	There exists an optimal embedding of dimension at most
tw(G) + 1	tw(G) + 1
needs separator shadow + involved result for separators with $0 \in \operatorname{conv} S$	
algorithmic proof idea: given a tree decomposition, start at a 0-node, try to flatten all adjacent nodes or move on to the next 0-node	
$\begin{array}{c}1\\2\\2\\4\\0\\4\\0\\7\end{array}$	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$

$\lambda_2(L_w)$	$\lambda_{\sf max}(L_w)$
Tree-Width Bound	Tree-Width Bound
There exists an optimal embedding of dimension at most	There exists an optimal embedding of dimension at most
tw(G) + 1	tw(G) + 1
needs separator shadow $+$ involved result for separators with $0 \in \operatorname{conv} S$	Obs.: in separated sets no forces interact outside separator space.
algorithmic proof idea: given a tree decomposition, start at a 0-node, try to flatten all adjacent nodes or move on to the next 0-node	algorithmic proof idea: given a tree decomposition, find a node S with maximal dim(lin(S)). For adjacent nodes U , rotate basis of U outside lin($S \cap U$) into lin(S), continue recursively
l _o	

Result 3	3 :	Sharpness	of	Tree-Width	Dimension	Bounds
-----------------	------------	-----------	----	-------------------	-----------	--------

$\lambda_2(L_w)$	$\lambda_{max}(L_w)$
For $n \ge 4$, connect three vertices completely to K_n	Connect n vertices completely to K_n , delete a perfect matching
$tw(G) = n, \dim = n+1$	$tw(G) = n$, $\dim = n + 1$
$1 \\ 0.5 \\ 0 \\ -0.5 \\ -1 \\ -1 \\ -1 \\ -0.5 \\ 0 \\ 0 \\ 0.5 \\ 1 \\ -1 \\ -0.5 \\ 0 \\ 0 \\ 0 \\ -1 \\ -0.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} & 0.4 \\ & 0.2 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.2 \\ & 0.1 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.2 \\ & 0.2 \\ & 0.4 \\ & -0.4 \\ & -0.4 \\ & -0.2 \\ & -0.1 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ $

Fiedler vectors: eigenvectors to $\lambda_2(L(G))$ starting point of spectral graph partitioning heuristics

Idea: Try to spread out the vertices even further by redistributing the edge lengths $\rightarrow l_{ij}$ for $ij \in E$

Fiedler vectors: eigenvectors to $\lambda_2(L(G))$ starting point of spectral graph partitioning heuristics

Idea: Try to spread out the vertices even further by redistributing the edge lengths $\rightarrow l_{ij}$ for $ij \in E$

To obtain an SDP: bound the edge lengths by $\sum l_{ij}^2 \leq |E|$

$$\begin{array}{rl} \max & \sum_{i \in N} \|v_i\|^2\\ \text{s.t.} & \|v_i - v_j\| \leq l_{ij} & \text{for } ij \in E,\\ (F) & \sum_{i \in N} v_i = 0,\\ & \sum_{ij \in E} l_{ij}^2 \leq |E|,\\ & l \in \mathbb{R}^E, \ v_i \in \mathbb{R}^n \text{ for } i \in N \end{array}$$

Fiedler vectors: eigenvectors to $\lambda_2(L(G))$ starting point of spectral graph partitioning heuristics

Idea: Try to spread out the vertices even further by redistributing the edge lengths $\rightarrow l_{ij}$ for $ij \in E$

To obtain an SDP: bound the edge lengths by $\sum l_{ij}^2 \leq |E|$

$$\max \sum_{i \in N} \|v_i\|^2$$

s.t. $\|v_i - v_j\| \le l_{ij}$ for $ij \in E$,
$$\sum_{i \in N} v_i = 0,$$

$$\sum_{ij \in E} l_{ij}^2 \le |E|,$$

 $l \in \mathbb{R}^E, v_i \in \mathbb{R}^n$ for $i \in N$

Theorem. For G = (N, E) connected and $V = [v_1, \ldots, v_n]$ optimal for (F), $\sum_{i \in N} ||v_i||^2 = \frac{|E|}{\lambda_2(L(G))}$ and $V^{\top}u$ is an eigenvector of $\lambda_2(L(G))$ for $u \in \mathbb{R}^n$.

Fiedler vectors: eigenvectors to $\lambda_2(L(G))$ starting point of spectral graph partitioning heuristics

Idea: Try to spread out the vertices even further by redistributing the edge lengths $\rightarrow l_{ij}$ for $ij \in E$

To obtain an SDP: bound the edge lengths by $\sum l_{ij}^2 \leq |E|$

 $\begin{array}{ll} \max & \sum_{i \in N} \|v_i\|^2 \\ \text{s.t.} & \|v_i - v_j\| \leq l_{ij} \quad \text{for } ij \in E, \\ \sum_{i \in N} v_i = 0, \\ \sum_{i j \in E} l_{ij}^2 \leq |E|, \\ l \in \mathbb{R}^E, \ v_i \in \mathbb{R}^n \text{ for } i \in N \end{array} \begin{array}{ll} \min & |E|\rho \\ \text{s.t.} & \sum_{i j \in E} w_{ij}E_{ij} + \mu ee^\top \geq I, \\ \rho - w_{ij} = 0 \quad \text{for } ij \in E, \\ w \in \mathbb{R}^E_+, \rho \geq 0, \mu \in \mathbb{R} \end{array}$

Theorem. For G = (N, E) connected and $V = [v_1, \ldots, v_n]$ optimal for (F), $\sum_{i \in N} ||v_i||^2 = \frac{|E|}{\lambda_2(L(G))}$ and $V^{\top}u$ is an eigenvector of $\lambda_2(L(G))$ for $u \in \mathbb{R}^n$.

Fiedler vectors: eigenvectors to $\lambda_2(L(G))$ starting point of spectral graph partitioning heuristics

Idea: Try to spread out the vertices even further by redistributing the edge lengths $\rightarrow l_{ij}$ for $ij \in E$

To obtain an SDP: bound the edge lengths by $\sum l_{ij}^2 \leq |E|$

 $\begin{array}{ll} \max & \sum_{i \in N} \|v_i\|^2 \\ \text{s.t.} & \|v_i - v_j\| \leq l_{ij} \quad \text{for } ij \in E, \\ \sum_{i \in N} v_i = 0, \\ \sum_{i j \in E} l_{ij}^2 \leq |E|, \\ l \in \mathbb{R}^E, v_i \in \mathbb{R}^n \text{ for } i \in N \end{array} \begin{array}{ll} \min & |E|\rho \\ \text{s.t.} & \sum_{i j \in E} w_{ij}E_{ij} + \mu ee^\top \geq I, \\ \rho - w_{ij} = 0 \quad \text{for } ij \in E, \\ w \in \mathbb{R}^E_+, \rho \geq 0, \mu \in \mathbb{R} \end{array}$

Theorem. For G = (N, E) connected and $V = [v_1, \ldots, v_n]$ optimal for (F), $\sum_{i \in N} ||v_i||^2 = \frac{|E|}{\lambda_2(L(G))}$ and $V^{\top}u$ is an eigenvector of $\lambda_2(L(G))$ for $u \in \mathbb{R}^n$.

Theorem. G = (N, E) connected, $u \in \mathbb{R}^n$, ||u|| = 1 eigenvector to $\lambda_2(L(G))$, then $X = \frac{|E|}{\lambda_2(L(G))} u u^{\top}$ and $l_{ij}^2 = \frac{|E|}{\lambda_2(L(G))} (u_i - u_j)^2$, $ij \in E$ is optimal for (F).

Fiedler vectors: eigenvectors to $\lambda_2(L(G))$ starting point of spectral graph partitioning heuristics

Idea: Try to spread out the vertices even further by redistributing the edge lengths $\rightarrow l_{ij}$ for $ij \in E$

To obtain an SDP: bound the edge lengths by $\sum l_{ij}^2 \leq |E|$

 $\begin{array}{ll} \max & \sum_{i \in N} \|v_i\|^2 \\ \text{s.t.} & \|v_i - v_j\| \leq l_{ij} \quad \text{for } ij \in E, \\ \sum_{i \in N} v_i = 0, \\ \sum_{i j \in E} l_{ij}^2 \leq |E|, \\ l \in \mathbb{R}^E, v_i \in \mathbb{R}^n \text{ for } i \in N \end{array} \begin{array}{ll} \min & |E|\rho \\ \text{s.t.} & \sum_{i j \in E} w_{ij}E_{ij} + \mu ee^\top \geq I, \\ \rho - w_{ij} = 0 \quad \text{for } ij \in E, \\ w \in \mathbb{R}^E_+, \rho \geq 0, \mu \in \mathbb{R} \end{array}$

Theorem. For G = (N, E) connected and $V = [v_1, \ldots, v_n]$ optimal for (F), $\sum_{i \in N} ||v_i||^2 = \frac{|E|}{\lambda_2(L(G))}$ and $V^{\top}u$ is an eigenvector of $\lambda_2(L(G))$ for $u \in \mathbb{R}^n$.

Theorem. G = (N, E) connected, $u \in \mathbb{R}^n$, ||u|| = 1 eigenvector to $\lambda_2(L(G))$, then $X = \frac{|E|}{\lambda_2(L(G))} u u^{\top}$ and $l_{ij}^2 = \frac{|E|}{\lambda_2(L(G))} (u_i - u_j)^2$, $ij \in E$ is optimal for (F).

 \Rightarrow Maximum rank optimal solution gives a map of the eigenspace of $\lambda_2(L(G))$. The same works out for λ_{max} , as well.

Given connected G = (N, E), node weights $s_i \ge 0$, edge lengths $l_{ij} \ge 0$,

$$\mathsf{EMB}(s,l) \qquad \begin{array}{l} \max \quad \sum_{i \in N} s_i \|v_i\|^2 \\ \text{s.t.} \quad \sum_{i \in N} s_i v_i = 0 \\ \|v_i - v_j\|^2 \leq l_{ij} \quad ij \in E \\ v_i \in \mathbb{R}^n \text{ for } i \in N. \end{array}$$

Given connected G = (N, E), node weights $s_i \ge 0$, edge lengths $l_{ij} \ge 0$,

$$\mathsf{EMB}(s,l) \qquad \begin{array}{l} \max \quad \sum_{i \in N} s_i \|v_i\|^2 \\ \text{s.t.} \quad \sum_{i \in N} s_i v_i = 0 \\ \|v_i - v_j\|^2 \leq l_{ij} \quad ij \in E \\ v_i \in \mathbb{R}^n \text{ for } i \in N. \end{array}$$

Minimal dimension of an optimal solution for weights s and length l

 $\dim_G(s,l) = \min\{\dim \operatorname{span} \{v_i : i \in N\} : v_i \text{ optimal for } \mathsf{EMB}(s,l)\}$

Given connected G = (N, E), node weights $s_i \ge 0$, edge lengths $l_{ij} \ge 0$,

$$\mathsf{EMB}(s,l) \qquad \begin{array}{l} \max \quad \sum_{i \in N} s_i \|v_i\|^2 \\ \text{s.t.} \quad \sum_{i \in N} s_i v_i = 0 \\ \|v_i - v_j\|^2 \leq l_{ij} \quad ij \in E \\ v_i \in \mathbb{R}^n \text{ for } i \in N. \end{array}$$

Minimal dimension of an optimal solution for weights s and length l

 $\dim_G(s,l) = \min\{\dim \operatorname{span} \{v_i : i \in N\} : v_i \text{ optimal for } \mathsf{EMB}(s,l)\}$

Rotational Dimension of G = (N, E):• G connected:rotdim $(G) := \max\{\dim_G(s, l) : s \in \mathbb{Z}_+^N, l \in \mathbb{Z}_+^E\}$ • $G = (\emptyset, \emptyset)$ rotdim (G) := -1• G not connected:rotdim $(G) := \max\{\operatorname{rotdim} (C) : C \text{ is a component of } G\}$

Given connected G = (N, E), node weights $s_i \ge 0$, edge lengths $l_{ij} \ge 0$,

$$\mathsf{EMB}(s,l) \qquad \begin{array}{l} \max \quad \sum_{i \in N} s_i \|v_i\|^2 \\ \text{s.t.} \quad \sum_{i \in N} s_i v_i = 0 \\ \|v_i - v_j\|^2 \leq l_{ij} \quad ij \in E \\ v_i \in \mathbb{R}^n \text{ for } i \in N. \end{array}$$

Minimal dimension of an optimal solution for weights s and length l

 $\dim_G(s,l) = \min\{\dim \operatorname{span} \{v_i : i \in N\} : v_i \text{ optimal for } \mathsf{EMB}(s,l)\}$

Rotational Dimension	of $G = (N, E)$:
• G connected:	$rotdim\left(G ight):=max\{dim_{G}(s,l):s\in\mathbb{Z}_{+}^{N},l\in\mathbb{Z}_{+}^{E}\}$
• $G = (\emptyset, \emptyset)$	rotdim(G) := -1
• G not connected:	rotdim (G) := max{rotdim (C) : C is a component of G}

One can prove (for connected G):

$$\begin{array}{ll} \mathsf{rotdim}\,(G) &= \max\{\dim_G(s,l) : s \in \mathbb{R}^N_+, l \in \mathbb{R}^E_+\} \\ &= \max\{\dim_G(s,l) : s \in \mathbb{R}^N_{++}, l \in \mathbb{R}^E_{++}\} \end{array}$$

Observation The rotational dimension is a minor monotone graph parameter.

Results for the Rotational Dimension

Theorem [Separator-Shadow]

Let $v_i \in \mathbb{R}^n$, $i \in N$, be optimal for EMB(s,l) for a connected G = (N, E), let $C_1 \cup S \cup C_2$ partition N so that no node in C_1 is adjacent to a node in C_2 . Then, for at least one $j \in \{1, 2\}$, for every $i \in C_j$ the straight line segment $[0, v_i]$ intersects the convex hull of the points in S.

Theorem [Tree-Width]

Given a connected graph G = (N, E) with node weights $s \in \mathbb{R}^N_+$ and edge lengths $l \in \mathbb{R}^E_+$, there exists on optimal solution of EMB(s, l) having dimension at most tree-width of G plus one.

Forbidden Minor Characterizations

- rotdim $(G) \leq 0 \Leftrightarrow$ all components are nodes (forbidden K_2)
- rotdim $(G) \leq 1 \Leftrightarrow$ all components are paths (forbidden K_3 , $K_{1,3}$)
- rotdim $(G) \leq 2 \Leftrightarrow$ all components are outerplanar (forbidden K_4 , $K_{2,3}$)

Open: rotdim $(G) \leq 3$? [forbidden K_5 , but rotdim $(K_{3,3}) = 3$]

rotdim (G) \leq 2 \Leftrightarrow all components of G are outerplanar

Outerplanar graphs are characterized by forbidden minors K_4 and $K_{2,3}$

- rotdim $(K_4) = 3$: regular 3-dim simplex,
- rotdim $(K_{2,3}) = 3$: Let $N = \{1, 2\} \cup \{3, 4, 5\}$ and choose $l_{1i} = 1$ and $l_{2i} = 2$ for $i \in \{3, 4, 5\}$.

Main idea of rotdim (outerplanar) \leq 2:

Take a connected outerplanar graph G' and enlarge it to a connected outerplanar graph G having maximum degree ≤ 3 :

The former is a minor of the latter, so rotdim $(G') \leq \operatorname{rotdim}(G)$.

Given an optimal embedding v_i of G for s > 0 and l > 0, we show dim span $\{v_i : i \in N\} \leq 2$ by case distinction w.r.t. the position of the origin.

Concluding Remarks

- Results show a clear connection between separator structure and structural properties of the extremal eigenvectors
- For many classes of graphs the tree-width bounds are far from optimal: Theorem for λ_{max} : Any bipartite graph has a 1-dim optimal embedding
- Conjecture for λ_2 : planar graphs have 3-dim optimal embeddings
- Relation of Rotational Dimension to the Colin de Verdière number? (certainly not equal, but maybe rotdim $\leq \mu$)