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Introduction

e simple undirected Graph G = (N, E), N ={1,...,n}, E C {ij
e Laplacian L(G) = Diag(4e) — A A ...adjacency matrix, e=[1,1,...,1]"
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Introduction
e simple undirected Graph G = (N, E), N={1,...,n}, EC{ij:i,j € N,i#* j}
e Laplacian L(G) = Diag(4e) — A A ...adjacency matrix, e=[1,1,...,1]"
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e weighted Laplacian for w > 0: L, (G) = Z w;ij Eij Ei; = [ 1 1 ] .
ijEE J
e Properties: L, = 0 (sym., pos. semidef.), M (Ly) =0 with EV e.
e [Fiedler 1973, 1989, 1993] X (L(G)) > 0 iff G is connected

proved close ties to edge and node connectivity, “algebraic connectivity”
e EV to X>(L) used in many partitioning heuristics, “Fiedler vector”

e Laplacian Spectrum in Graph Theory, see e.g. [Mohar 1991, 2004]
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Central Question:

What connections exist between eigenvectors of extremal eigenvalues
and structural properties of the graph?

Idea: redistribute the weight on the edges of the graph, then
hopefully characteristic properties will become more apparent.

[Fiedler 1989] did this for A

_ E . T
rlpe% Ao (L) W—{wER+.Z]:Ewij—w e<1}
7€

— Absolute Algebraic Connectivity

[Fiedler 1990] exhibits formula for optimal weights in trees.
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From Eigenvalues to Embeddings in the Eigenspace

mMaxX Ao ( Ly
wew 2( )

gél)/"\]/ Amax(Lw)

as SDP:

max A
S.t. ZijEE Wi By + ,ueeT Vi
efw=1,w>0

min A\
S.t. ZijeEwijEij j Vi
eflw=1w>0

divide by Aoy > O

min elw max elw
s.t. ZijGE wijEij —+ ,ueeT >~ I S.t. Zz’jEE wz-jEZ-j < I
w >0 w >0
dualize
max (I, X) :
’ . min (I, X)
.. < 9
st (BgX)sl, ijeb st. (E;,X)>1, ijeE
<ee ,X> =0 b% ; 0
X >0 -

embedding: set X = VIV with V = [v1,...,v,]

max > flvill®
s.it. Jlui—v|2<1, ijeEE
v; — 0
v; € R?

min 37 [Jvsl|®
s.it. |vi—wv||?>1, ijeE
v; € R”

(> _wv; = 0 holds, as well)



The embedding problem

maX Ao ( Ly,
weWw 2( )

B’;'Vr\l Amax(Lw)

max 3 ||vil®
s.t. v —v||? <1,

Z’UZ’:O

v, € R"

ij € E

min 3 [lvi|?
s.t. |lvi—wv||*>1, ij€eE
(> vi=0)

v; € R"

e )\>: nodes are pulled outwards and edges are cables of length 1
Amax. hodes are pressed inwards and edges are struts of length 1

wj; is the force acting on the cable/strut ij € E

e For any u € R” the projection VTu yields an eigenvector to Aopt -

(by complementarity)
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maX Ao ( Ly,
weWw 2( )

B’é% Amax(Lw)

max 3 ||vil®
s.t. v —v||? <1,

Z’UZ’:O

v, € R"

ij € E

min 3 [lvi|?
s.t. |lvi—wv||*>1, ij€eE
(> vi=0)

v; € R"

e )\>: nodes are pulled outwards and edges are cables of length 1
Amax. hodes are pressed inwards and edges are struts of length 1
wj; is the force acting on the cable/strut ij € E

e For any u € R” the projection VTu yields an eigenvector to Aopt -

(by complementarity)

e Replace the origin by the barycenter v = %Zvi

max > [|v; — vl
s.it. Jlui—v|2<1, ijeE
> (vi—v) =0
v; € R?
then Y lv; — )2 =152, [lvi — vyl

min 3 flv; — 32

s.it. |vi—wv||?>1, ijeE
> (vi—v) =0
v; € R?

is the variance.



Equivalent/Related Problems

e \>: Fastest Mixing Markov Processes [SunBoydXiaoDiaconis2006]
X2 IS the rate of convergence to the stationary distribution
also give an interpretation as maximizing conductance

e Maximum Variance Unfolding (visualization in data mining)
[WeinbergerSaul2004]

e Tensegrity Theory [Connelly1999]
the variance corresponds to the potential and L,, to the stress matrix

e Graph Realizations [BelkConnelly2007]

e low dimensional embeddings [LinialLondonRabinovich1995]

e Expanders [HooryLinialWigderson2006]

e Colin de Verdiere and related graph parameters [CdV9O8,vdHoIst03]
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For a connected graph G = (N, E) the removal of a (node-)separator S C N
disconnects the graph into at least two connected components.

Tree-Width
Given G = (N, E), let T = (N, ) be a tree with A/ C 2V and &£ C (g) so that
(i) N= UUeNU'
(ii) For every e € E thereis a U € N with e C U.
(iii) If Uy, Uo, Uz € N with Uy on the T—path from U; to Us, then UiNU3 C Us.
Then T is called a tree-decomposition of G.

The width of T is the number max{|U| -1 :U € N}.
The tree-width tw(G) is the least width of any tree-decomposition of G.

Any U e N and any UNU’ with {U, U’} € £ is a separator of G.




Main Result 1: Separators and Optimality of Embeddings

Given optimal v; € R®, 1 € N, of a connected graph G = (NN, E) and
a separator S C N separating G into node sets 4, C5

so that no edges run between C7 and C5,

|etS:{’U7;Zi€S}.

>\2(Lw) Amax(Lw)

Separator-Shadow Th.
For at least one j € {1,2}

[vi,0) NconvS =0 Vie Cj

geometric proof idea:




Sketch of Proof: by contradiction

Assume the Theorem does not hold, then w.l.0.q.
there are points v1,vo with 1 € C1, 2 € C5 and [0,v1]NS = [0,v2] NS = 0.

bz < B; separates [0,v;] from S choose a € [0, 1] so that both
Cin{z:blz < B} #0

b b b
[ﬁ]:a[ﬂll ] +<1_a)[ﬁi] > v; =0 = lin. dep., thus h exists

Verify: epsilon movement improves solution = contradiction to optimality [
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Main Result 2:
Structural bounds on the existence of low dimensional solutions

>\2(Lw) Amax(Lw)

Tree-Width Bound

There exists an optimal embedding
of dimension at most

tw(G) + 1

needs separator shadow —+ involved
result for separators with O € conv S

algorithmic proof idea:

given a tree decomposition,
start at a 0O-node,

try to flatten all adjacent nodes
or move on to the next O-node




Theorem [Separators Containing the Origin]

Let v; € R" for ¢ € N be an optimal solution of (EMB) for a connected graph
G = (N,FE) and let S C N with 0 € § = conv{vs : s € S} be a separator in G
inducing a partition (S,C1,...,Cp) of N so that no node in C; is adjacent to
a nodein Cy for j# h, jyhe M ={1,...,m}. Set £L =spanS and, for j € M,
5 = Yec o (.

(1)

(ii)

(i)

If 67> > ican s 0; for one j€ M then there exist h € L1+ and an optimal
embedding v, € R" of (EMB) with v, =v; for i € S, v} € L + span{h,v; :
i€y} forieCiand v € LA{6) o v 6 >0} for i€l g G- I In
addition, there exists b € span {v; : i € Cj}, ||b]| = 1 so that (b,v;) > 0 for
all « € 5, then such an embedding exists with h = 0.

If 6; < ZjeM\{j} 0; for all 3 € M then there exist vectors di,d>,ds € Lt
||d1|| = ||d2|| = ||d3|| = 1 with dimspan{dl,dg,dg,} < 2, bj c {dl,dg,d3},
j € M, and an optimal embedding v, € R", i € N, of (EMB) with v} = v;
for ¢ € S so that for each j € M we have v, € L4 {b; : § > 0} for all
1 € Cj. One may assume b; = dy for at most one j € M.

If, in case (ii), the index 7€ M is the only j € M satisfying b; = d; and
at most |S| — 1 nodes of S are adjacent to nodes in Cj5, then there is an
optimal embedding of dimension at most |S]|.



initial embedding (i) 61 >+ ...+ 6m — dim(S,C7)

(iii) if (i) A j single A |S;] < |S| — dim(S) + 1

G
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Main Result 2:
Structural bounds on the existence of low dimensional solutions

>\2(Lw)

Amax(Lw)

Tree-Width Bound

There exists an optimal embedding
of dimension at most

tw(G) + 1

Tree-Width Bound

There exists an optimal embedding
of dimension at most

tw(G) + 1

needs separator shadow —+ involved
result for separators with O € conv S

algorithmic proof idea:

given a tree decomposition,
start at a 0O-node,

try to flatten all adjacent nodes
or move on to the next O-node

ODbs.: in separated sets no forces
interact outside separator space.

algorithmic proof idea:

given a tree decomposition, find a
node S with maximal dim(lin(S)).
For adjacent nodes U,

rotate basis of U outside lin(SNU)
into 1in(S), continue recursively




Result 3: Sharpness of Tree-Width
)\Q(Lw)

Dimension Bounds
Amax (L)

For n > 4, connect three vertices
completely to K,

tw(G) = n,

dim=n-+1

Connect n vertices completely to
K,, delete a perfect matching

tw(G) =n, dim=n+41

-0.44]
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the edge lengths — [;; for ij € E
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Result 4: A Graph Realization for Fiedler Vectors

Fiedler vectors: eigenvectors to A2 (L(G))
starting point of spectral graph partitioning heuristics

Idea: Try to spread out the vertices even further by redistributing
the edge lengths — [;; for ij € E

To obtain an SDP: bound the edge lengths by Zlfj < |E|

max ZiGN [oals B min |E|p
s.t. [vi — vyl Solij forij € E, st. Y .cpwiiEij 4 pee’ =1
. ; — tJ _ ’
(F) ZzGN Vi ’ p—w;; =0 for 1y € E,

Z'jEEl'Qj < |E|7 o
1 7 — >
leRE, v, eR*forie N w€R+,P_O,MER

Theorem. For G = (N, E) connected and V = [v1,...,v,] optimal for (F),

> ien luill? = % and  V'u is an eigenvector of \2(L(G)) for u € R".

Theorem. G = (N, E) connected, u € R", ||lu|| = 1 eigenvector to X\ (L(G)),

then X = %uuT and 7, = %(ui —u;)?, ij € E is optimal for (F).

= Maximum rank optimal solution gives a map of the eigenspace of \>(L(G)).

The same works out for Amax, as well.



Generalized )\>-Problem — Rotational Dimension of a Graph
Given connected G = (NN, E), node weights s; > 0, edge lengths [;; > 0O,

MaXx Zz’EN SZ'H’UiHQ

S.t. Z s;v; = 0
EMB(s, ! ienN
(8, ) ||’UZ — ’Uj||2 < lz'j 1y € FE
v; € R™ for 1 € N.



Generalized )\>-Problem — Rotational Dimension of a Graph
Given connected G = (NN, E), node weights s; > 0, edge lengths [;; > 0O,

MaXx Zz’EN SZ'HUiHQ
S.t. - v; =0
EMB(s, 1) 2ien o -~
[vi — v (|7 < by ij € B
v; € R™ for 1 € N.
Minimal dimension of an optimal solution for weights s and length [

dimg(s,l) = min{dimspan{v; : i € N} : v; optimal for EMB(s,1)}



Generalized )\>-Problem — Rotational Dimension of a Graph
Given connected G = (NN, E), node weights s; > 0, edge lengths [;; > 0O,

MaXx Zz’EN SZ'H’UiHQ
S.t. - v; =0
EMB(s, 1) 2ien o -~
[vi — v (|7 < by ij € B
v; € R™ for 1 € N.
Minimal dimension of an optimal solution for weights s and length [

dimg(s,l) = min{dimspan{v; : i € N} : v; optimal for EMB(s,1)}
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e G connected: rotdim (G) :
e G=(0,0) rotdim (G) :
e G not connected: rotdim (G) :
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—1
max{rotdim (C) : C' is a component of G}




Generalized )\>-Problem — Rotational Dimension of a Graph
Given connected G = (NN, E), node weights s; > 0, edge lengths [;; > 0O,

MaXx Zz’EN SZ'H’UiHQ
S.t. - v; =0
EMB(s, 1) 2ien o -~
[vi — v (|7 < by ij € B
v; € R™ for 1 € N.
Minimal dimension of an optimal solution for weights s and length [

dimg(s,l) = min{dimspan{v; : i € N} : v; optimal for EMB(s,1)}

Rotational Dimension of G = (N, E):

e G connected: rotdim (G) :
e G=(0,0) rotdim (G) :
e G not connected: rotdim (G) :

max{dimg(s,1) : s € ZY,l € Z'}
—1
max{rotdim (C) : C' is a component of G}

One can prove (for connected G):

rotdim (G) = max{dimg(s,l) : s e RY,l € RY}
max{dima(s,1) : s € RY 1 e RY_}

Observation The rotational dimension is a minor monotone graph parameter.




Results for the Rotational Dimension

Theorem [Separator-Shadow]
Let v; € R?, ¢ € N, be optimal for EMB(s, 1) for a connected G = (N, F),
let C1USUC, partition N so that no node in (7 is adjacent to a node in Cs.

Then, for at least one j € {1,2}, for every i € C; the straight line segment
[0, v;] intersects the convex hull of the points in S.

Theorem [Tree-Width]
Given a connected graph G = (N, E) with node weights s € R]}rf and edge

lengths [ € IR{?;, there exists on optimal solution of EMB(s, ) having dimension
at most tree-width of G plus one.

Forbidden Minor Characterizations

e rotdim (G) < 0 & all components are nodes (forbidden K5)

e rotdim (G) <1 « all components are paths (forbidden K3, Ki3)

e rotdim (G) < 2 « all components are outerplanar (forbidden Kj4, K> 3)

Open: rotdim (G) < 37 [forbidden Ks, but rotdim (K33) = 3]



rotdim (G) < 2 < all components of G are outerplanar

Outerplanar graphs are characterized by forbidden minors K4 and K>3
e rotdim (K4) = 3 : regular 3-dim simplex,
e rotdim (K23) =3 : Let N ={1,2} U{3,4,5} and

choose l3; =1 and Iy; = 2 for i € {3,4,5}.

Main idea of rotdim (outerplanar) < 2:

Take a connected outerplanar graph G’ and enlarge it to a connected outer-
planar graph G having maximum degree < 3:

The former is a minor of the latter, so rotdim (G’) < rotdim (G).

Given an optimal embedding v; of G for s > 0 and [ > 0, we show
dimspan{v; : i € N} <2 by case distinction w.r.t. the position of the origin.



Concluding Remarks

e Results show a clear connection between separator structure
and structural properties of the extremal eigenvectors

e For many classes of graphs the tree-width bounds are far from optimal:

Theorem for Amax:
Any bipartite graph has a 1-dim optimal embedding

e Conjecture for Ap: planar graphs have 3-dim optimal embeddings

e Relation of Rotational Dimension to the Colin de Verdiere number?
(certainly not equal, but maybe rotdim< pu)



