
ESI Summer Institute,
Nonlinear Methods in

Combinatorial Optimization
Florian Jarre,

Univ. Düsseldorf

Klagenfurt, Aug. 20 – Sept. 3, 2010

– p. 1



Elementary Optimality Conditions
for Nonlinear SDPs

Motivation

First order conditions

An example

Second order conditions

An example

– p. 2



Motivation

Low-rank approach to solve a large scale linear SDP
(to moderate accuracy):

=⇒ Nonlinear semidefinite program.

Quite different forms of degeneracies compared to “usual”
nonlinear programs.
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Relation to nonlinear programming

Interior-point methods:
Nonlinear programming methods (Newton and homotopy)
to solve linear programs or linear semidefinite programs.

Here:
Look at optimality conditions.
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NLSDPs and NLPs

Nonlinear semidefinite program (NLSDP ):

minimize f(x) | F (x) = 0,

G(x) � 0.

f : IRn → IR, F : IRn → IRm, G : IRn → Sd continuously
differentiable.
Nonlinear program (NLP ):

minimize f(x) | F (x) = 0,

G(x) ≤ 0,

with componentwise inequalities G(x) ≤ 0.
(Redundancies – symmetric multipliers)
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Notation

The derivatives of f and F at a point x:
Row vector Df(x) and the m × n Jacobian matrix DF (x).

Derivative of G at a point x is a linear map
DG(x) : IRn → Sd.
Applying the linear map DG(x) to a vector ∆x:
DG(x)[∆x] ∈ Sd, or

DG(x)[∆x] =
n∑

i=1

∆xiGi(x) where Gi(x) :=
∂

∂xi
G(x) ∈ Sd.

Characteristic equation: G(x + ∆x) ≈ G(x) + DG(x)[∆x].
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Linearized subproblems

Let some point x̄ be given.
“Linearized semidefinite programming problem” (LSDP ):

minimize f(x̄) + Df(x̄)∆x | F (x̄) + DF (x̄)∆x = 0,

G(x̄) + DG(x̄)[∆x] � 0.

Likewise (LP ), linearized problem for (NLP )

minimize f(x̄) + Df(x̄)∆x | F (x̄) + DF (x̄)∆x = 0,

G(x̄) + DG(x̄)[∆x] ≤ 0.
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Tangential and linearized cones

Feasible set of (NLSDP ): F1

Tangential cone of F1 at a point x̄ ∈ F1:

T1 := {∆x | ∃sk → ∆x, ∃αk > 0, αk → 0 s.t. x̄+αks
k ∈ F1}.

If x̄ is a minimizer of (NLSDP ) then Df(x̄)∆x ≥ 0 ∀∆x ∈ T1.

Tangential cone of (LSDP ) at ∆x = 0:
“linearized cone” L1

If x̄ is a minimizer of (LSDP ) then Df(x̄)∆x ≥ 0 ∀∆x ∈ L1.
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Back to (NLP )

Feasible set of (NLP ): F2

Tangential cone at a point x̄ ∈ F2: T2.
L2 the “linearized cone” of (NLP ) at a point x̄.

L2 = {∆x | F (x̄) + DF (x̄)∆x = 0,

Gk,l(x̄) + (DG(x̄))k,l∆x ≤ 0

for all k, l with Gk,l(x̄) = 0}.

In nonlinear optimization: T2 ⊂ L2 always holds true.
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Idea of Proof:

0 = F (x̄ + αks
k) = F (x̄) + αkDF (x̄)sk + o(αk).

Dividing by αk > 0, using F (x̄) = 0 yields

0 = DF (x̄)sk + o(1),

Taking the limit as k → ∞ yields 0 = DF (x̄)∆x
(Equality constraints in the definition of L2)

Same argument for active inequalities.
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When the MFCQ-constraint qualification

DF (x̄) has linearly independent rows
∃∆x such that DF (x̄)∆x = 0 and

(DG(x̄))k,l∆x < 0 for all (k, l) with (G(x̄))k,l = 0,

is satisfied then, L2 = T2.

In particular,
T2 and L2 are polyhedral.
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Is T1 also a polyhedral?

“Should” be so, since G(x) � 0 iff all principal submatrices
of “−G(x)” are nonnegative.

But: NO! (in general).

The determinant does not satisfy MFCQ when zero is an
eigenvalue of multiplicity more than one.
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Note:

Let some X � 0 be given:

X =
[

U (1) U (2)
]
[

D(1) 0

0 0

] [

(U (1))T

(U (2))T

]

with D(1) ≻ 0.

Tangential cone of Sd
+ at X: All matrices of the form

W =
[

U (1) U (2)
]
[

∗ ∗

∗ W̃ (2)

] [

(U (1))T

(U (2))T

]

where W̃ (2) � 0 and “∗” can be anything.
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Find a representation of T1

Let x̄ ∈ F1 and αk > 0 with αk → 0, and sk → ∆x,
such that F (x̄ + αks

k) = 0 and G(x̄ + αks
k) � 0 for all k.

As before, DF (x̄)∆x = 0.

Let

G(x̄) = UΛUT =
[

U (1) U (2)
]
[

Λ(1) 0

0 0

] [

(U (1))T

(U (2))T

]

where Λ(1) ≺ 0.
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Keep U fixed and define G̃(x) := UT G(x)U .

Partition

G̃(x) :=

[

G̃(1)(x) G̃(1,2)(x)

G̃(1,2)(x)T G̃(2)(x)

]

.

So, G̃(1)(x̄) = Λ(1) ≺ 0.
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Since G̃(x̄ + αks
k) � 0:

0 � G̃(2)(x̄ + αks
k) − G̃(2)(x̄)

︸ ︷︷ ︸

=0

≈ αkDG̃(2)(x̄)[sk].

Taking the limit as k → ∞,

DG̃(2)(x̄)[∆x] � 0,

i.e.,

T1 ⊂ {∆x | DF (x̄)∆x = 0, DG̃(2)(x̄)[∆x] � 0}.

– p. 16



Example

For x ∈ IR let

G(x) :=

[

−2 x

x −x2

]

.

Then, G(x) � 0 for all x ∈ IR and thus, F1 = IR, and thus,
also T1 = IR, while the feasible set of (LSDP ) at x̄ = 0 is
given by

{

∆x |

[

−2 0

0 0

]

+

[

0 ∆x

∆x 0

]

� 0

}

= {0}.

Here, T1 6⊂ L1.
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A constraint qualification (MFCQ)

DF (x̄) has linearly independent rows, and ∃ d s.t.

DF (x̄)d = 0 and
G(x̄) + DG(x̄)[d] ≺ 0.

Lemma: If MFCQ is satisfied, then

L1 = T1 = {∆x | DF (x̄)∆x = 0, DG̃(2)(x̄)[∆x] � 0}.

Thus, the tangential cone of (NLSPD) is not polyhedral, in
general.
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KKT conditions

Lemma: Let x̄ be a local minimizer of (NLSDP ) and let
(NLSDP ) be regular at x̄ in the sense of MFCQ. Then
there exists a matrix Ȳ ∈ Sd and a vector ȳ ∈ IRm such that

Df(x̄)T + DF (x̄)T ȳ +






G1(x̄) • Ȳ
...

Gm(x̄) • Ȳ




 = 0 and G(x̄) • Ȳ = 0.

Lagrangian function

L(x, y, Y ) := f(x) + F (x)T y + G(x) • Y

with Y ∈ Sd
+.

Lagrangian for (NLP ) and (NLSDP ) is identical.
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Second order conditions

D2G at a point x ∈ IRn:

D2G(x)[∆x,∆x] =

n∑

i,j=1

∆xi∆xjGi,j(x) ∈ Sd

with Gi,j(x) := ∂2

∂xi∂xj
G(x) ∈ Sd.

For Y ∈ Sd:

Y • D2G(x)[∆x,∆x] =
n∑

i,j=1

∆xi∆xj(Y • Gi,j(x)) = ∆xTH∆x,

where H = H(x, Y ) is the symmetric n × n-matrix with
matrix entries Y • Gi,j(x).
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Cone of critical directions

Let x̄ be a local minimizer of (NLSDP ) and let the MFCQ
be satisfied at x̄.
Then, the KKT conditions state that Df(x̄)∆x ≥ 0 for all
∆x ∈ T1.

The cone of critical directions is given by

C1 := {∆x ∈ T1 | Df(x̄)∆x = 0}.
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For (NLP ) the “critical cone” depends on three conditions:

DF (x̄)∆x = 0,

(DG(x̄))k,l∆x = 0 for all (k, l) with Ȳk,l > 0

(DG(x̄))k,l∆x ≤ 0 for all (k, l) with (G(x̄))k,l = 0, Ȳk,l = 0.

If we assume strict complementarity, then

C2 = {∆x | the first two conditions hold}.
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For (NLSDP ) we also assume uniqueness of the
multipliers and strict complementarity, G(x̄) − Ȳ ≺ 0.
The cone of critical directions at x̄ is then

C1 = {∆x | DF (x̄)∆x = 0, (U (2))T DG(x̄)[∆x]U (2)

︸ ︷︷ ︸

DG̃(2)(x̄)[∆x]

= 0}.

Let U (2) have q columns, i.e. U (2) is a d × q matrix.
C1 is the tangent cone of the following boundary manifold of
the feasible set

F bd
1 := {x | F (x) = 0, rank(G(x)) = d − q}

at x̄.
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The condition G(x) has rank d− q translates to the condition
that the Schur complement

G̃(2)(x) − G̃(1,2)(x)T (G̃(1)(x))−1G̃(1,2)(x) ≡ 0

equals zero (for small ‖x − x̄‖).

Regularity of F bd
1 is equivalent to linear independence of the

q(q + 1)/2 gradients of G̃(2) and of the m gradients of Fν(x)
at x̄, (1 ≤ ν ≤ m).
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A second example

For (NLP ), if x̄ is a local minimizer satisfying LICQ, then
the Hessian of the Lagrangian is positive semidefinite on C2.
Example by Diehl et.al. (2006):

minimize − x2
1 − (1 − x2)

2 |






−1 x1 x2

x1 −1 0

x2 0 −1




 � 0.

The semidefiniteness constraint is satisfied if, and only if,
x2

1 + x2
2 ≤ 1.

Global optimal solution: x̄ = (0,−1)T .
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Semidefiniteness constraint is linear; hence,
D2

xxL(x̄, ȳ) = D2f(x̄) ≺ 0.
Cone of critical directions (x1, 0)T with x1 ∈ IR.

Implications:
Slow convergence for sequential semidefinite programming
algorithms that use subproblems with a convex quadratic
objective function and linearized semidefiniteness
constraints.

Contrast to standard SQP methods!
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Second order conditions

Lemma: Let x̄ be a local minimizer of (NLSDP ) and let
x̄, ȳ, Ȳ be a strictly complementary KKT-point. Assume that
the set F bd

1 satisfies MFCQ. Then

hT (D2
xL(x̄, ȳ, Ȳ ) + H(x̄, Ȳ ))h ≥ 0 ∀ h ∈ C1,

where H(x̄, Ȳ ) � 0 is a matrix depending on the curvature
of the semidefinite cone at G(x̄) and the directional
derivatives of G at x̄, and is given by its matrix entries

(H(x̄, Ȳ ))i,j := −2Ȳ • Gi(x̄)G(x̄)†Gj(x̄)T .
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The converse direction also holds under the additional
assumption of regularity of F bd

1 :

Lemma: Let x̄ be a strictly complementary KKT-point of
(NLSDP ) and assume that

hT (D2
xL(x̄, ȳ, Ȳ ) + H(x̄, Ȳ ))h > 0 ∀ h ∈ C1.

Then, x̄ is a strict local minimizer of (NLSDP ) that satisfies
the second order growth condition, ∃ǫ > 0, δ > 0 :

f(x + s) ≥ f(x) + ǫ‖s‖2 ∀ ‖s‖ ≤ δ with x + s ∈ F1.
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For (NLP ) the term D2
xL(x̄, ȳ, Ȳ ) + H(x̄, Ȳ ) is replaced with

D2
xL(x̄, ȳ, Ȳ ).

This yields a stronger second order sufficient condition:
D2

xL(x̄, ȳ, Ȳ ) be positive definite on C1, see Robinson (1982).

The weaker form above due to Shapiro (1997) explains the
“negative example” that complicates the local convergence
of sequential semidefinite programming algorithms.
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