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Motivation
Low-rank approach to solve a large scale linear SDP
(to moderate accuracy):
—> Nonlinear semidefinite program.

Quite different forms of degeneracies compared to “usual”
nonlinear programs.
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Relation to nonlinear programming

Interior-point methods:
Nonlinear programming methods (Newton and homotopy)
to solve linear programs or linear semidefinite programs.

Here:
Look at optimality conditions.



NLSDPs and NLPs

Nonlinear semidefinite program

minimize f(x) | F(x) =0,
G(x) = 0.

f:R"— R, F:R"— R", G:R"— S%continuously
differentiable.
Nonlinear program

minimize f(x) | F(x) =0,
G(x) <0,

with componentwise inequalities G(z) < 0.
(Redundancies — symmetric multipliers)
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Notation

The derivatives of f and F at a point x:
Row vector D f(x) and the m x n Jacobian matrix DF(zx).

Derivative of GG at a point x is a linear map
DG(z) : R" — S¢.

Applying the linear map DG(x) to a vector Axz:
DG(x)[Ax] € 8¢, or

DG()[Ar] = 3 AriGilx) where Gi(r) = ai.
1=1 '

Characteristic equation: G(x + Ax) ~ G(x) + DG(x)|Ax].

G(z) € 8%
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Linearized subproblems

Let some point z be given.
“Linearized semidefinite programming problem”

minimize f(z)+ Df(z)Ax | F(z)+ DF(z)Ax =0,
G(z) 4+ DG(x)|Az] < 0.

Likewise , linearized problem for

minimize f(z)+ Df(z)Ax | F(z)+ DF(z)Ax =0,



Tangential and linearized cones

Feasible set of C F
Tangential cone of F; at a point z € Fi:

71 :={Ax | 3s¥ — Az, Jap >0, ap — 0 S.t. T+ays® € Fit}.

If z Is a minimizer of then Df(z)Az > 0 VAz € 7;.

Tangential cone of at Az = 0:
“linearized cone” £,

If z IS a minimizer of then Df(z)Ax > 0VAx € L.
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Back to

Feasible set of . Fo
Tangential cone at a point z € F». 7s.
Lo the “linearized cone” of at a point z.

Lo={Ax | F(2)+ DF(z)Az =0,
ijl(i’) + (DG(E))k,lﬁw <0
for all k,1 with G}, ;(z) = 0}.

In nonlinear optimization: 7> C £, always holds true.
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|dea of Proof:

0= F(z+ oys") = F(Z) + o, DF(Z)s" + olay,).
Dividing by o > 0, using I'(z) = 0 yields
0= DF(%)s" 4+ o(1),

Taking the limit as k£ — oo yields 0 = DF(z)Ax
(Equality constraints in the definition of £,)

Same argument for active inequalities.



When the MFCQ-constraint qualification

DF(z) has linearly independent rows
JAz such that DF(z)Ax = 0 and
(DG(Z))r Ax < 0 forall (k1) with (G(Z))g; = 0,

IS satisfied then, £, = 7.

In particular,
75 and Lo are polyhedral.
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Is 77 also a polyhedral?
“Should” be so, since G(z) =< 0 iff all principal submatrices
of “—G(x)” are nonnegative.
But: NO! (in general).

The determinant does not satisfy MFCQ when zero is an
eigenvalue of multiplicity more than one.
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Note:
Let some X > 0 be given:

X — [Uu) U(2>}

with D) = 0.

Tangential cone of S¢ at X: All matrices of the form

* * (U(l))T

_ v po
U R | ) P

where W2 = 0 and “«” can be anything.
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Find a representation of 7;
Let z € F, and a;. > 0 with a. — 0, and s* — Az,
such that F(z + a;s¥) = 0 and G(z + as*) < 0 for all k.
As before, DF(z)Ax = 0.

Let

G(f):UAUT:[U(D U(Q)} 0 0| |

where A < 0.
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Keep U fixed and define G(z) := UTG(z)U.

Partition
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Since G(z + ays*) < 0:

~ ~

0= GP(z + aps®) — G (z) ~  DGP) (2)[s"].
=0

Taking the limit as £ — oo,

DG (z)[Az] < 0,
l.e.,

T € {Az | DF(z2)Az =0, DG®(z)[Az] < 0}.
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For z € IR let

G(x) = 5| -

Then, G(z) < 0 for all x € IR and thus, F; = IR, and thus,
also 77 = IR, while the feasible set of atz=01s
given by

9 0 Azx
A ol _ o
{IOO+AxO } {0

Here, 71 ¢ L.
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A constraint qualification (MFCQ)

DF(z) has linearly independent rows, and 3 d s.t.

DF(z)d =0 and
G(z) + DG(x)|d] < 0.

Lemma: If MFCQ Is satisfied, then

L1 =T ={Az | DF(z2)Az =0, DG?(z)[Az] =< 0}.

Thus, the tangential cone of IS not polyhedral, in
general.



KKT conditions

Lemma: Let z be a local minimizer of and let
be reqgular at z in the sense of MFCQ. Then

there exists a matrix Y € S and a vector § € IR™ such that

Df(z)l + DF(z)l g+ : =0 and G(z)eY =0.

Lagrangian function
L(z,y,Y) = f(z) + F(2)Ty + G(z) o Y

with Y € §9.
Lagrangian for and IS identical.
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Second order conditions
D?G at a point z € IR"™:
D?*G(z)[Az, Ax] = zn: Az;Ax;Gi i(x) € S
i,j=1
with G, j(z) = 52— G(z) € S

ForY ¢ S¢:

Y o D*G(2)[Ax, Ax] = Z Az Az;(Y o G i(z)) = Azt HA,
i,j=1

where H = H(x,Y) is the symmetric n x n-matrix with
matrix entries Y e G; ().
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Cone of critical directions

Let z be a local minimizer of and let the MFCQ

be satisfied at z.
Then, the KKT conditions state that D f(z)Ax > 0 for all

Ax € 1.
The cone of critical directions is given by

C1:= {ASIJ c 1 ‘ Df(f)A:E —= O}.
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For the “critical cone” depends on three conditions:

DF(z)Az = 0,
(DG(ZI_S))]C’[AZC = (0 for all (k, Z) with Yk,l > ()
(DG(z))pAr <0 forall (k1) with (G(z))g; =0, Yy, = 0.

If we assume strict complementarity, then

Co = {Ax | the first two conditions hold}.
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For we also assume uniqueness of the

multipliers and strict complementarity, G(z) — Y < 0.
The cone of critical directions at z IS then

Ci = {Az | DF(2)Az =0, (UHTDG(z)[Az]U? = 0}.

J/

N

DG®) (7)|Ax]

Let U have ¢ columns, i.e. U?) is a d x ¢ matrix.
C: Is the tangent cone of the following boundary manifold of

the feasible set

Fr .= {z| F(z) =0, rank(G(z))=d—q}
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The condition G(x) has rank d — ¢ translates to the condition
that the Schur complement

~ ~ ~

G (z) = G2 ()T (W ()1 GE D () = 0
equals zero (for small ||z — z||).

Regularity of 7 is equivalent to linear independence of the

¢(q + 1)/2 gradients of G(?) and of the m gradients of F, ()
atz, (1 <v<m).
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A second example

For , If 7 I1s a local minimizer satisfying LICQ, then
the Hessian of the Lagrangian is positive semidefinite on Cs.
Example by Diehl et.al. (2006):

1 1 5172-
minimize — 2% — (1—a2)* | |=1 -1 0| =0.
_LL‘Q 0 —1_

The semidefiniteness constraint is satisfied if, and only If,
ZC% — ZC% < 1.
Global optimal solution: z = (0, —1)".
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Semidefiniteness constraint is linear:; hence,
D%xL(fag) — D2f(j) < 0.
Cone of critical directions (z1,0)" with 21 € IR.

Implications:

Slow convergence for sequential semidefinite programming
algorithms that use subproblems with a convex quadratic
objective function and linearized semidefiniteness
constraints.

Contrast to standard SQP methods!
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Second order conditions

Lemma: Let z be a local minimizer of and let
z,7,Y be a strictly complementary KKT-point. Assume that
the set 7/ satisfies MFCQ. Then

W(D2L(z,3,Y)+H@Z,Y)h>0  VYheCl,

where H(z,Y) = 0 is a matrix depending on the curvature
of the semidefinite cone at G(z) and the directional
derivatives of G at z, and Is given by its matrix entries

(H(Z,Y)):; = —2Y ¢ G4(2)G(2)1G(z)T.
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The converse direction also holds under the additional
assumption of regularity of F%:

Lemma: Let z be a strictly complementary KKT-point of
and assume that

W(D:L(z,5,Y)+H(zZ,Y)h>0 YheCl.

Then, 7 Is a strict local minimizer of that satisfies
the second order growth condition, 9¢ > 0, 6 > 0 :

flx+s)> flz)+e|s||* Vsl <o withz+se Fi.
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For the term D2L(z,y,Y) + H(z,Y) is replaced with
D2L(z,3,Y).

This yields a stronger second order sufficient condition:
D?L(z,y,Y) be positive definite on C;, see Robinson (1982).

The weaker form above due to Shapiro (1997) explains the
“negative example” that complicates the local convergence
of sequential semidefinite programming algorithms.
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