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Notation

Sn: The space of symmetric n× n-matrices
X � 0: X ∈ Sn is positive semidefinite, X ∈ Sn

+.
X ≻ 0: X ∈ Sn is positive definite.

Standard scalar product on the space of n× n-matrices

〈C,X〉 := C •X := trace(CTX) =
∑

i,j

Ci,jXi,j

inducing the Frobenius norm,

X •X = ‖X‖2F .
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Notation (continued)

For given symmetric matrices A(i) a linear map A from Sn

to IRm is given by

A(X) =







A(1) •X
...

A(m) •X






.

The adjoint operator A∗ satisfying

〈A∗(y), X〉 = yTA(X) ∀ X ∈ Sn, y ∈ IRm

is given by

A∗(y) =
m

∑

i=1

yiA
(i).
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Linear semidefinite programs

minimize C •X where A(X) = b
X � 0

Similar structure as linear programs, only
“the condition x ≥ 0 (componentwise)”

replaced by
“the condition X � 0 (semidefinite)”

Can be solved by modified primal-dual methods
or, related, a “method of centers” (next).
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Applications

Relaxations of discrete optimization problems
Lovasz θ-function
Max-Cut
Binary linear programs (Lovasz-Schrijver) ...

Robust optimization

Optimal control problems
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Example

Consider the differential equation

ẋ(t) = Ax(t) with initial value x(0) = x(0).

The matrix A is called stable, if for all initial values x(0) the
solutions x(t) converge to zero when t→∞.

Note that this is the case if, and only if, the real part of all
eigenvalues of A is negative,

Re(λi(A)) < 0 for 1 ≤ i ≤ n.

(Just for completeness; not needed here.)
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Lyapunov’s theorem

Stable, if, and only if, ∃P ≻ 0 : ATP + PA ≺ 0.

Motivation:

d

dt
‖x(t)‖2P

=
d

dt
x(t)TPx(t)

= ẋ(t)TPx(t) + x(t)TPẋ(t)

= (Ax(t))TPx(t) + x(t)TPAx(t)

= x(t)T (ATP + PA)x(t)

< 0.
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SDP-formulation

If the matrices Pi, 1 ≤ i ≤ n(n + 1)/2, form a basis of Sn the
determination of a matrix P =

∑

i yiPi with P ≻ 0 and
ATP + PA ≺ 0 leads to a linear semidefinite program

min
{

λ |
∑

yiPi ≻ 0, λI −
∑

yi(A
TPi + PiA) ≻ 0

}

< 0,

a linear semidefinite program in the “dual” form.

(In this form typically unbounded.)

(There are cheaper ways of checking numerically
that the real parts of all eigenvalues of A are negative!)
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Nonlinear systems

Now consider the system

ẋ(t) = A(t)x(t) (∗)

where the matrix A(t) is not known explicitely.
(For example, when there are small unknown perturbations of the matrix A.)

If there exist matrices A(i), i = 1, 2, . . . ,K, with

A(t) ∈ conv
(

{

A(i)
}

i≤i≤K

)

for all t ≥ 0,

then the existence of a Lyapunov matrix P ≻ 0 with

(A(i))TP + PA(i) ≺ 0 for 1 ≤ i ≤ K

is a sufficient condition for the stability of (∗).
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Nonlinear systems

Because then,

A(t)TP + PA(t) ≺ 0 and
d

dt
‖x(t)‖2P = x(t)T (A(t)TP + PA(t))x(t) < 0

whenever x(t) 6= 0.
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Nonlinear systems

Because then,

A(t)TP + PA(t) ≺ 0 and
d

dt
‖x(t)‖2P = x(t)T (A(t)TP + PA(t))x(t) < 0

whenever x(t) 6= 0.

(The above argument is not complete; it can be made
complete by showing that d

dt ‖x(t)‖2P is “sufficiently”
negative.)
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Note

The condition that the real parts of all eigenvalues of all A(i)

are negative is a necessary but not a sufficient condition:

When the real part of all eigenvalues of two matrices A and
B are negative, this may not be the case for 1

2(A + B),
choose e.g.

A =

[

−1 4

0 −1

]

, B =

[

−1 0

4 −1

]

.

(All eigenvalues real and equal to −1 but 1
2(A + B) has

eigenvalue +1.)
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Method of centers

Consider the following problem:

minimize f(x) s.t. x ∈ IRn : fi(x) ≤ 0 for 1 ≤ i ≤ m.

Assumptions:
f and fi three times continuously differentiable
f and −

∑

i≥1 ln(−fi) convex

Always satisfied if all fi are convex
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Simplifications

f is linear, f(x) ≡ cT x
(Without loss of generality!)

The feasible set

S := {x | fi(x) ≤ 0 for 1 ≤ i ≤ m}

is bounded and has nonemtpy interior.
(Some restriction of generality)
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Logarithmic barrier method

φ(x) := −
m

∑

i=1

ln(−fi(x))

logarithmic barrier function for S, and for some fixed θ ≥ 1

ϕ(x, λ) := −θ ln(λ− cTx) + φ(x)

barrier function for S(λ) := S ∩ {x | cT x ≤ λ}.

The minimizer x̄ of φ is called the analytic center of S.
The minimizer x(λ) of ϕ( . , λ) is called analytic center of
S(λ).
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Method of analytic centers

Let x0 ∈ S◦ and λ0 > cT x0 be given. Set σ = 1
2 and k = 0.

Repeat

1. Reduce λk to λk+1 := λk − σ(λk − cT xk).

2. Starting at xk do few steps of Newton’s method for
minimizing ϕ( . , λk+1).

3. Set k := k + 1.

End.
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Crucial questions

1. How fast does Newton’s method converge?

2. How big is λk − cT xk compared to the unknown distance
cT xk − λopt?
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Distance to optimality
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First question

For simplicity, restrict examination to φ
and apply results for Newton’s method later to ϕ which has the same structure!

Intuitively, want ∇2φ to be “nearly constant” for Newton’s
method to work well.

In fact, want relative change of ∇2φ to be small.

The absolute change of ∇2φ is given by ∇3φ.

Hence, want ∇3φ to be small compared to ∇2φ.

Look at “Karmarkar’s barrier function” for the positive
real axis: φ(t) := − ln t. Here, φ′′′(t) ≤ 2(φ′′(t))3/2.

Generalize this to n dimensions:
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Self-concordance

The barrier function φ : S◦ → IR is called (strongly)
self-concordant if for any x ∈ S◦ and any h ∈ IRn the
restriction l = lx,h of φ to the line x + th,

l(t) := φ(x + th)

satisfies l′′′(0) ≤ 2(l′′(0))3/2.

This assumes l is C3-smooth and l′′ ≥ 0, i.e. l is convex.

Power 3/2 guarantees invariance w.r.t. the length of h !
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Does this make sense?

I.) Do there exist functions that satisfy this condition?

1. Easy to verify (binomial formula):
If φ1 and φ2 are self-concordant, then so is φ1 + φ2.
(provided the domains of φ1 and φ2 intersect)

2. Very easy to verify:
If A is an affine mapping and φ is self-concordant, then
so is φ(A( . )). (provided the range of A intersects the domain of φ.)

3. This implies that −
∑

ln(bi − aT
i x) is a self-concordant

barrier function for the polyhedron {x | aT
i x ≤ bi}.
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4. Convex quadratic constraints q(x) ≤ 0:
For fixed x with q(x) < 0 and fixed h, the term q(x + th)
can be factored into the product of two linear terms, so
that by 1. and 2., the function l(t) = − ln(−q(x + th)) is
self-concordant!
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Most important
5. Semidefinite constraints X � 0 (X = XT ∈ IRn×n):

The barrier function φ(X) := − ln det(X) is
self-concordant:
For fixed X ≻ 0 and fixed H = HT ∈ IRn×n it follows

l(t) = − ln det(X + tH)

= − ln det(X1/2(I + tX−1/2HX−1/2)X1/2)

= −2 ln det(X1/2)− ln(

n
∏

j=1

(1 + tλi))

= − ln det(X)−
n

∑

j=1

ln(1 + tλi),

where λi are the eigenvalues of X−1/2HX−1/2

independent of t. Again, by 1. and 2. it follows that φ is
self-concordant.
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Note that

l′(0) = − trace(X−1/2HX−1/2) = − trace(HX−1) =: −H•X−1.

The derivative of − log det(X) with respect to the scalar
product ”•” is given by X−1.

(Remember, the derivative is the linear map that best
approximates the function locally.)
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Moreover, let some symmetric matrices A(0), . . . , A(m) be
given. Consider the problem

minimize bT y s.t. A(y) := A(0) +

m
∑

1=1

yiA
(i) � 0.

By affine invariance, also the function Φ(y) := − ln det(A(y))
is self-concordant. Moreover, the derivatives of Φ can be
explicitely stated:

∂

∂yi
Φ(y) = −A(y)−1 • A(i),

∂2

∂yi∂yj
Φ(y) = A(y)−1A(i)A(y)−1 • A(j).
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II.) Does this condition really guarantee that Newton’s
method converges well?

Since l′′′(0) ≤ 2l′′(0)3/2 holds for any x (defining l), this
implies that l′′′(t) ≤ 2l′′(t)3/2 for any t in the domain of l.

Let u(t) := l′′(t), then u′(t) ≤ 2u(t)3/2 is a valid differential
inequality.

The extremal solution of v′(t) = 2v(t)3/2 with initial value

v(0) = u(0) = hT∇2φ(x)h := δ2

is given by v(t) = 1/(δ−1 − t)2.

Whenever v has finite values, u must be finite, and hence
so must be l.
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Inner Ellipsoid

Define a (semi-) norm as ‖h‖Hx
:=

√

hT Hxh based on the
Hessian Hx := ∇2φ(x) of φ at x

Let E(x) := {h | hT∇2φ(x)h ≤ 1} be the unit ball of the
(semi-) norm.

Then, for any x ∈ S◦ the inclusion x + E(x) ⊂ S holds true.
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Inner ellipsoid
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Further Results

Equivalent Relative Lipschitz condition:

|hT (∇2φ(x + ∆x)−∇2φ(x))h| ≤ δM(δ)hT∇2φ(x)h,

where

δ := ‖∆x‖Hx
and M(δ) :=

2

1− δ
+

δ

(1− δ)2
= 2 + O(δ).

(Somewhat more difficult to show.)
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Newton’s method

Let x ∈ S◦ be given. Denote Hx := ∇2φ(x).
Let ∆x := −H−1

x ∇φ(x) be the Newton step for minimizing φ
starting at x ∈ S◦. Assume that δ := ‖∆x‖Hx

< 1.
Then, by the inner ellipsoid x + ∆x ∈ S◦.

Let x̃ := x + ∆x and ∆x̃ := −H−1
x̃ ∇φ(x̃) be the “next”

Newton step. Then

‖∆x̃‖Hx̃
≤ δ2

(1− δ)2
.

This implies quadratic convergence in at least one fifth of
the inner ellipsoid about the center.
(Related idea of proof as for inner ellipsoid.)
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Second question, distance to optimality

Self-concordance is a (relative) Lipschitz condition on the
Hessian of φ.

By adding a linear perturbation to φ, the
self-concordance condition obviously does not change.

But by adding a linear perturbation to φ we can make
any point x̂ ∈ S◦ a minimizer of the perturbed function.

For x̂ close to the boundary, the perturbation will have
to be large, and the perturbed function will have a “large
gradient” at the minimizer of φ.

If we want to avoid points close to the boundary to be a
minimizer of “our” barrier function, we may limit the
norm of its gradient – of course with respect to the
canonical norm ‖ . ‖Hx̂

.
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With the notation used in the self-concordance condition,
we require for some fixed θ ≥ 1:

l′(0) ≤
√

θl′′(0)1/2.

If φ is self-concordant and satisfies the above condition, we
say φ is θ-self-concordant.
This condition is also affine invariant.
It is “additive” w.r.t. θ, in the sense that if φ1 and φ2 satisfy
the condition with values θ1 ≥ 1 and θ2 ≥ 1, then so does
φ1 + φ2 with value θ1 + θ2.
The previous examples satisfy the condition with θ = 1 for a
linear or convex quadratic constraint, and θ = l for an l × l
semidefinite constraint.
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Results

1. We have λ− cT x(λ) > cTx(λ)− λopt when θ in the
definition of ϕ is chosen as least as large as the
self-concordance parameter of φ. “Identical” proof as for inner

ellipsoid, just the other way round.

2. Let x ∈ S◦ be arbitrary and let φ be a θ-self-concordant
barrier function for S. Let H := {y | (y − x)T∇φ(x) ≥ 0}
be a half space cutting through x and E(x) be the inner
ellipsoid. Then

S ∩ H ⊂ x + (θ + 2
√

θ)E(x).

(H = IRn when ∇φ(x) = 0.) Again, similar proof as for inner ellipsoid.
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Inner and outer ellipsoid
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• Now we have all essential tools to show that the method of
centers converges at a fixed rate.
• If λk is changed only little at each iteration (namely
σ = 1/(8

√
θ) rather than σ = 1/2) then only one step of

Newton’s method suffices at each iteration, and after 12
√

θ
iterations the unknown distance λk − λopt is reduced by a
factor at least 1/2.
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Discussion

The given rate of convergence (for a problem with 10000
convex quadratic constraints, 1200 iterations are needed to
reduce the error bound λk − λopt by a factor 1/2) is too slow
for practical implementations.
BUT it guarantees a very weak dependence on the data of
the problem — the rate only depends on a weighted
number of constraints, where complicated conditions like
semidefiniteness constraints are counted with a somewhat
higher weight.

– p. 37



• No dependence on the number of unknowns.
(Generalization to Hilbert space by Renegar)

• Assuming exact artihmetic – unlike the conjugate gradient or
steepest descent methods, no dependence on any
condition numbers of the problem.
• Assuming exact artihmetic – unlike the simplex method, no
dependence on degeneracy.
Hence, the CONCEPT is very robust.
Find an acceleration based on this concept.
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Modifications

Infeasible starting points, empty interior, unbounded set
of optimal solutions.

Predictor corrector strategy: Under “mild” conditions,
the central path x(λ) forms a smooth curve leading to
an optimal solution.
Through any given point x̂ ∈ S◦ one can define a
perturbed central path x̂(λ) leading to an optimal
solution as well, and the tangent to this curve is “easily”
computable. (Same system as used for Newton’s
method.)
Do some extrapolation along this tangent and start the
Newton corrections from the extrapolated point.
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Conic formulations

• Each convex program that posesses a self-concordant
barrier function can be expressed in conic form with a
self-concordant barrier function of the same order of
magnitude. (Nesterov and Nemirovskii 1994)
• Conic formulations allow for primal-dual methods that
have turned out to be more efficient in practical
implementations. (Their theoretical complexity is the same
as the one of the method of centers.)
• Many programs (like semidefinite programs) are naturally
given in conic form and thus allow for direct application of
primal dual methods.
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Duality for SDPs

If there exists X ≻ 0 with A(X) = b (strict feasibility), then

(P ) inf C •X s.t. A(X) = b, X � 0

(D) = sup bT y s.t. A∗(y) + S = C, S � 0.

If (P ) and (D) have strictly feasible solutions, then the

optimal solutions Xopt and yopt, Sopt of both problems exist
and satisfy the equation

XoptSopt = 0.
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Basic theory (continued)

Conversely, any pair X and y, S of feasible points for (P )
and (D) satisfying

A(X) = b, X � 0
A∗(y) + S = C, S � 0

XS = 0 (or SX = 0)

is optimal for both problems.
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Basic theory (continued)

Conversely, any pair X and y, S of feasible points for (P )
and (D) satisfying

A(X) = b, X � 0
A∗(y) + S = C, S � 0

XS = 0 (or SX = 0)

is optimal for both problems.

For Newton’s method symmetrize (Monteiro et. al.) and
perturb the last equation for some small µ > 0:
E.g. M(X,S) = 1

2(XS + SX) (AHO)
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Basic theory (continued)

Conversely, any pair X and y, S of feasible points for (P )
and (D) satisfying

A(X) = b, X � 0
A∗(y) + S = C, S � 0
M(X,S) = 0 ←− µI

is optimal for both problems.

For Newton’s method symmetrize (Monteiro et. al.) and
perturb the last equation for some small µ > 0:
E.g. M(X,S) = 1

2(XS + SX) (AHO)

Solutions coincide with the “analytic centers” of the
self-concordance approach (but not so the Newton steps).
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Basic Theory (continued)

For example (AHO), the linearization of

A(X) = b, X � 0
A∗(y) + S = C, S � 0
XS + SX = 2µI
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Basic theory (continued)

For example (AHO), the linearization of

A(X) = b, X � 0
A∗(y) + S = C, S � 0
XS + SX = 2µI

yields the linear system for ∆X,∆y,∆S:

A(∆X) = b−A(X), X � 0
A∗(∆y) + ∆S = C −A∗(y)− S, S � 0

X∆S + ∆XS + S∆X + ∆SX = 2µI −XS − SX.
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Interior-point methods

Same principle as in case of linear programs

(linear systems somewhat more complicated,
step length needs to be adjusted more carefully ...)

Repeat

Update (X, y, S) 7→ (X + ∆X, y + ∆y, S + ∆S).

Reduce µ > 0

Until convergence

– p. 47



Sedumi

Again, a very comfortable free software package for this is
SEDUMI.

The nonnegative cone {x | x ≥ 0} can be combined with

the semidefinite cone {X | X � 0} and with

the ice-cream cone, {x | x0 ≥ ‖(x1, . . . , xn)‖2},
also called second order cone or Loren(t)z cone

(and with some rotated second-order cone).

To be specified by an input argument “K”.
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